Pesticide Residue Monitoring Program Fiscal Year 2022 Pesticide Report

U.S. Food and Drug Administration

https://www.fda.gov/food/chemical-contaminants-pesticides/pesticides

Table of Contents

Acknowledgments	4
FDA Pesticide Residue Monitoring Program Reports and Data	4
Executive Summary	5
Glossary and Abbreviations	7
FDA Pesticide Residue Monitoring Program	9
Regulatory Monitoring and Enforcement	9
Regulatory Monitoring Program Sampling Design	11
Focused Sampling	12
Animal Food	12
Analytical Methods and Pesticide Coverage	12
FDA Total Diet Study	13
Cooperative Agreements and International Activities	14
FDA-State Cooperation	14
International Activities	14
Results and Discussion	16
Regulatory Monitoring of Human Foods	16
Results	16
Overall Results for Domestic and Import Human Food Samples	18
Geographic Coverage	20
Pesticides Detected	22
Regulatory Monitoring of Animal Foods	25
Geographic Coverage	26
Pesticides Detected	28
Focused Sampling	29
Imported Human Food Products That May Warrant Special Attention	29
References	31
Appendices	32
Appendix A. Pesticides and Industrial Chemicals Analyzed by FDA Pesticide Methorin FY 2022	
Appendix B. Analysis of Domestic Human Foods by Commodity Group in FY 2022	38
Appendix C. Analysis of Import Human Foods by Commodity Group in FY 2022	41

Figures
Figure 1. Results of Domestic Human Food Samples by Commodity Group17
Figure 2. Results of Import Human Food Samples by Commodity Group18
Figure 3. Summary of Results of Domestic and Import Human Food Samples19
Figure 4. Summary of Results of Domestic and Import Animal Food Samples25
Tables
Table 1. Domestic Samples Collected and Analyzed per State
Table 2. Import Samples per Country/Economy of Origin for Which Ten or More Samples Were Collected and Analyzed
Table 2a. Countries/Economies of Origin from Which Fewer Than Ten Samples Were Collected and Analyzed
Table 3. Pesticides Found in Human Foods in FY 2022 Listed in Order of Frequency
Table 4. Summary of Animal Foods by Commodity Type26
Table 5. Domestic Animal Food Samples Collected and Analyzed per State27
Table 6. Import Animal Food Samples Collected and Analyzed per Country of Origin27
Table 7. Pesticides Found in Animal Foods in FY 2022 Listed in Order of Frequency
Table 8. Pesticides Found in Samples Analyzed for the Animal-Derived Foods Assignment
Table 9. Import Human Food Commodities That May Warrant Special Attention 30

Acknowledgments

This report was compiled through the efforts of the following FDA staff: Charlotte Liang, Sara McGrath, Jeffrey Read, Lauren Robin, Arnaldo Rosado, Chris Sack, and Xuhui Zhao in the Center for Food Safety and Applied Nutrition; Krisztina Wolf, Linda Benjamin, and David Edwards in the Center for Veterinary Medicine; and Michael McLaughlin and Mohammed Islam in the Office of Regulatory Affairs.

FDA Pesticide Residue Monitoring Program Reports and Data

For more information about FDA pesticide residue monitoring program reports, see https://www.fda.gov/food/pesticides/pesticide-residue-monitoring-program-reports-and-data. Since 1987, annual pesticide reports have been prepared to summarize results of the Food and Drug Administration's (FDA or the Agency) pesticide residue monitoring program. Reports from Fiscal Year (FY) 1987 to FY 1993 were published in the Journal of the Association of Official Analytical Chemists/Journal of AOAC International. FY 1993 and FY 1994 reports were published in the journal and also made available on the public FDA website (www.fda.gov). Subsequent reports are only available on the FDA website. Each report is available in the format(s) used at the time it was written.

In addition to the annual reports, specific pesticide monitoring data and statistical analyses of human and animal foods for each year are also available in text format on the FDA website as "database" files. The database files include statistical analysis of findings by multiple country/commodity/pesticide combinations, along with data for individual samples from which the summary information was compiled. Instructions and explanations of the data and statistical analyses are provided for each database file. The database files are available from FY 1996 on.

Executive Summary

Growers often use pesticides to protect their products from insects, weeds, fungi, and other pests. U.S. regulators help ensure that food produced with the use of pesticides is safe to eat by setting allowable levels called tolerances for pesticide chemical residues and by monitoring foods in the market to determine if those levels are being exceeded. The role of the Environmental Protection Agency (EPA) is to establish pesticide tolerances on the amount of a pesticide chemical residue a food can contain. The Food and Drug Administration (FDA) is responsible for enforcing those tolerances for domestic foods shipped in interstate commerce and foods imported into the United States (U.S.).*

This report summarizes the results of the FDA's pesticide monitoring program for FY 2022. The findings show that the levels of pesticide chemical residues measured by the FDA in the U.S. food supply are generally in compliance with EPA pesticide tolerances.

The FDA employs a three-fold strategy to enforce EPA's pesticide tolerances in human and animal foods. In its regulatory pesticide residue monitoring program, the FDA selectively monitors a broad range of domestic and import commodities for residues of approximately 750 different pesticides and selected industrial compounds. The FDA may also carry out focused sampling surveys for specific commodities or selected pesticides of special interest. In addition, the FDA monitors the levels of pesticide chemical residues in foods prepared for consumption in its Total Diet Study (TDS), an ongoing program that monitors contaminants and nutrients in the average U.S. diet.

In FY 2022 (October 1, 2021, through September 30, 2022), the FDA analyzed 2,800 human food samples (731 domestic and 2,069 import samples) in its regulatory monitoring program. The FDA collected domestic human food samples from 41 states and import human food samples from 81 countries/economies.

The FDA found that 96.2% of domestic and 89.5% of import human foods were compliant with federal standards. No pesticide chemical residues were detected in 42.7% of the domestic and 44.6% of the import samples.

In FY 2022, the FDA also analyzed 230 animal food samples (113 domestic and 117 import samples) for pesticides. The agency found that 95.6% of domestic and 100% of import animal food samples were compliant with federal standards. No pesticide chemical residues were detected in 38.1% of the domestic and 50.4% of the import animal food samples.

In some human food commodity groups, the violation rate was higher for import samples. The higher violation rate affirms the validity of the sampling design in targeting import commodities more likely to contain violative pesticide chemical residues, and the countries more likely to export them. The factors that were considered in targeting import commodities include past problem areas, findings from state and federal monitoring, and foreign pesticide usage data.

^{*}With the exception of meat; poultry; *Siluriformes* fish, including catfish; and certain egg products regulated by the Food Safety and Inspection Service (FSIS) of the U.S. Department of Agriculture (USDA).

In FY 2022, the FDA conducted pesticide analyses for 96 domestic milk, shell eggs, honey, and game meat samples for the "Domestically Produced Animal-Derived Foods" assignment. No violative pesticide residues were found in 99% of the animal-derived foods, and 90.6% of the samples contained no residues.

Sample collection and analysis in FY 2022 was moderately impacted by the COVID-19 pandemic. Although sample collection increased relative to the FY 2020 and FY 2021 collections, approximately 35% fewer human food samples and 37% fewer animal food samples were collected in FY 2022 compared with FY 2019 (the most recent year not impacted by the COVID-19 pandemic).

Glossary and Abbreviations

TERM	DEFINITION
Action level	Human or animal food may contain a pesticide chemical residue from sources of contamination that cannot be avoided by good agricultural or manufacturing practices, such as contamination by a pesticide that persists in the environment. In the absence of an EPA tolerance, or tolerance exemption, FDA may establish an "action level" for such unavoidable pesticide chemical residues. An action level is a recommended level of a contaminant not to exceed. An action level is not legally binding, and FDA may take enforcement action on a case-by-case basis whether a contaminant is below, at, or above an action level. (http://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/ucm077969.htm)
Agency	U.S. Food and Drug Administration
APEC	Asia-Pacific Economic Cooperation
CFR	U.S. Code of Federal Regulations
CFSAN	FDA Center for Food Safety and Applied Nutrition
Codex	Codex Alimentarius Commission
CVM	FDA Center for Veterinary Medicine
Domestic sample	Sample of a commodity produced and held for sale in the United States.
DWPE	Detention Without Physical Examination
EPA	U.S. Environmental Protection Agency
FACTS	FDA Field Accomplishment and Compliance Tracking System database
FDA	U.S. Food and Drug Administration
FFDCA	Federal Food, Drug, and Cosmetic Act
FSCF	Food Safety Cooperation Forum
FSIS	USDA Food Safety and Inspection Service
FY	Fiscal Year
Import sample	Sample of products, which originate from another country, collected while the goods are in import status.

LOD Limit of Detection – The minimum concentration of a pesticide chemical

residue that can be reliably distinguished from zero.¹

LOQ Limit of Quantitation – The minimum concentration of a pesticide

chemical residue that can be quantified with acceptable precision.

MOU Memorandum of Understanding

MRL Maximum Residue Level

MRM Multiresidue Method – FDA pesticide method designed to analyze

multiple pesticide chemical residues during a single analysis.

No-tolerance violation

Pesticide chemical residue found at, or above, the LOQ for pesticides in a commodity in which EPA has not established a tolerance for that particular

pesticide/commodity combination or a tolerance exemption.

Over-tolerance violation

Pesticide chemical residue found at a level above an EPA tolerance.

ORA FDA Office of Regulatory Affairs

PDP USDA Pesticide Data Program

PPB Parts per billion – residue concentration equivalent to microgram/kilogram

PPM Parts per million – residue concentration equivalent to milligram/kilogram

SPS Sanitary and Phytosanitary

SRM Selective Residue Method – FDA pesticide method designed to analyze

selected pesticide chemicals or a single pesticide chemical.

TDS Total Diet Study

Tolerance The EPA-established maximum residue level of a specific pesticide

chemical that is permitted in or on a human or animal food in the United States. The tolerances are listed in 40 CFR Part 180 – Tolerances and

Exemptions for Pesticide Chemical Residues in Food.

Trace level Residue level less than the LOQ but greater than, or equal to, the LOD

USDA U.S. Department of Agriculture

WTO World Trade Organization

FDA Pesticide Residue Monitoring Program

Three federal government agencies share responsibility for the regulation and oversight of pesticide chemical residues in or on food. The U.S. Environmental Protection Agency (EPA) registers (i.e., approves) the use of pesticides and establishes tolerances for pesticide chemical residues in or on food resulting from the use of the pesticides. Tolerances are the EPA-established maximum residue levels (MRLs) of a specific pesticide chemical that is permitted in or on a human or animal food in the United States. EPA also provides a strong U.S. preventive controls program by licensing pesticide applicators, conducting pesticide use inspections, and establishing and enforcing pesticide labeling provisions. The Food and Drug Administration (FDA) enforces tolerances in both import and domestic foods shipped in interstate commerce, except for meat; poultry; *Siluriformes* fish, including catfish; and certain egg products for which the Food Safety and Inspection Service (FSIS) of the U.S. Department of Agriculture (USDA) is responsible. The FDA also monitors pesticide chemical residue levels in commodities representative of the U.S. diet by carrying out regional and national collections under the Total Diet Study (TDS).

Regulatory Monitoring and Enforcement

The FDA samples individual lots of domestically produced and imported foods and analyzes them to determine whether they contain pesticide chemical residues that are "unsafe" within the meaning of the Federal Food, Drug, and Cosmetic Act (FFDCA). This activity is carried out pursuant to the enforcement of tolerances established by EPA and includes the monitoring of food for residues of cancelled pesticides used in the past that persist in the environment, which may be addressed by the FDA action levels. Domestic samples of foods produced and held for sale in the U.S. are typically collected close to the point of production in the distribution system, e.g., at growers, packers, and distributors. Import samples are collected when products are offered for entry into U.S. commerce. Because the EPA tolerances are established primarily for raw agricultural commodities, the emphasis of the FDA's regulatory sampling is on the unwashed, whole (unpeeled) raw commodity; however, some processed foods are also sampled.

The FDA may take regulatory action against food commodities containing pesticide chemical residues when they are found:

- at a level above an EPA tolerance for the pesticide/commodity combination, or
- in a commodity for which the EPA has not established a tolerance or a tolerance exemption for that particular pesticide/commodity combination ("no-tolerance" violations).

Foods may contain a pesticide chemical residue from sources of contamination that cannot be avoided by good agricultural or manufacturing practices, such as contamination by a pesticide that persists in the environment. The FDA may establish an "action level" for unavoidable residues that do not have a tolerance or tolerance exemption. The action level is not legally binding, but the FDA monitors unavoidable residues and may take enforcement action on a case-by-case basis, considering the action level and other factors.

For domestic foods, the FDA may issue Warning Letters to the responsible growers and seek other sanctions such as seizure to remove the food from commerce or injunction to correct the cause of the violation. Shipments of import food commodities may be refused entry into U.S. commerce. The responsible firm(s) and product(s) may be placed on an import alert under "Detention Without Physical Examination," or DWPE, which may be invoked for future shipments of that firm's commodity based on the finding of a single violative shipment. Section 801 of the FFDCA authorizes the FDA to refuse admission of regulated articles that appear to be adulterated or misbranded. Typically, the information to make this determination is obtained by physical examination of the entry, although it is not required. For example, entries of imported foods with a violative history would likely create the appearance of adulteration under the FFDCA for future shipments, based on the results obtained from previous examinations of the same foods that were found to contain violative pesticide residues. DWPE can be applied to a product or products from specific growers, manufacturers, or shippers, and may extend to a geographic area or country if the problem is demonstrated to be sufficiently broad-based.

The FDA's import alerts describe firms and products currently subject to DWPE for pesticide chemical residues and other food-related violations. There are currently four import alerts that address food products that are subject to DWPE for pesticides:

- Import Alert 99-05: "Detention Without Physical Examination of Raw Agricultural Products for Pesticides"
- Import Alert 99-08: "Detention Without Physical Examination of Processed Human and Animal Foods for Pesticides"
- Import Alert 99-14: "Countrywide Detention Without Physical Examination of Raw Agricultural Products for Pesticides"
- Import Alert 99-15: "Countrywide Detention Without Physical Examination of Processed Foods for Pesticides"

Growers, manufacturers, and shippers that have products subject to DWPE within an import alert may be asked to provide evidence of compliance for each shipment or lot of product exported to the United States. This procedure places the burden of demonstrating product compliance on the importer of record before the product can be released into domestic commerce. Firms can request removal of their product(s) from DWPE under an FDA import alert by petitioning the Agency and providing evidence establishing that the conditions that gave rise to the appearance of a violation have been resolved and that there is sufficient evidence for the Agency to have confidence that future entries will be in compliance with the FFDCA. Generally, a minimum of five consecutive non-violative commercial shipments, as demonstrated by providing the FDA with acceptable reports of private laboratory analyses, as well as an effective, detailed approach addressing the conditions that gave rise to the appearance of the violation is provided to support the corrective actions and removal of a grower's, manufacturer's, or shipper's product from DWPE.

Regulatory Monitoring Program Sampling Design

The goal of the FDA's pesticide residue monitoring program is to carry out selective monitoring of human and animal foods for consumer protection. The FDA samples are primarily of the surveillance type, meaning there is no specific prior knowledge or evidence that a particular food shipment contains illegal residues. However, the FDA's monitoring is not random or statistically designed; rather, emphasis is given to the sampling of certain commodities. Commodity choice is based upon multiple factors, including:

- most frequently consumed or imported;
- commodities and places of origin with a history of violations;
- size of shipments;
- analysis of past problem areas;
- commodity/pesticide findings from state, USDA, and FDA monitoring;
- foreign pesticide usage data and regional intelligence on pesticide use;
- dietary significance of the food;
- volume and product value of individual commodities of domestic food produced and entered into interstate commerce and of import food offered for entry into the United States;
- origin of imported food; and
- chemical characteristics and toxicity of the pesticide(s) used.

One important consideration when designing the FDA pesticide residue monitoring program for human foods is the distinction between domestic and import commodities. Historically, the violation rate of import samples is 3-5 times higher than the rate for domestic samples. For example, between FY 2016-2021, the violation rate for domestic samples ranged from 0.9-3.8%, whereas the rate for import samples ranged from 9.8-12.9%. Because the violation rate of import samples is higher than for domestic samples, the FDA allocates more resources towards testing import compared with domestic commodities. Typically, import commodities comprise about 70% of all samples analyzed each year. In FY 2022, 74% of samples analyzed were imports.

In addition to increased sampling of import commodities, the FDA targets specific commodities and countries that might warrant special attention based upon historically high violation rates and trends. The FDA also reviews available foreign pesticide usage data and data from the USDA's Pesticide Data Program (PDP), a statistically representative survey of pesticide residues in selected food commodities, to develop its sampling program (https://www.ams.usda.gov/datasets/pdp).

Other federal agencies and several states have their own monitoring programs for pesticides. Through collaboration and agreements, they provide information and data on violative samples found in domestic commerce to the FDA (see Cooperative Arrangements and International Activities section). The FDA leverages these data to focus its resources where they are most efficiently and effectively used.

Sampling levels and bias for particular import or domestic commodities can vary significantly from year to year. Pesticide applications are modified in response to changing weather patterns, new or re-emergent pests, or developed resistance to pesticides. Targeted

commodities may not be the largest imports by volume from a particular country. A high violation rate for a targeted commodity does not mean that a country's overall violation rate for all commodities is high; rather, it affirms the FDA's sampling design to select commodities and production sources that are likely to be higher risk.

The FDA's current pesticide sampling program, coupled with broad-based enforcement strategies for imports, allows the FDA to achieve the program's main objective of consumer protection across a wide range of commodities. The FDA has conducted statistically-based and resource-intensive incidence and level monitoring studies of four significant foods. The FDA's TDS program and the USDA PDP program collect incidence and level monitoring data, which support the pesticide regulatory monitoring program.

Focused Sampling

In addition to samples collected for routine regulatory monitoring, the FDA may conduct special "focused sampling" assignments to target specific food commodities for analysis. Focused sampling is generally used to follow up on suspected problem areas or to acquire residue data on selected commodities and/or selected pesticides, not usually or previously covered during regulatory monitoring. Typically, samples collected for a focused sampling assignment are analyzed using routine pesticide procedures; however, in some cases the samples are analyzed for targeted residues of interest.

Animal Food

In addition to monitoring food for human consumption, the FDA samples and analyzes domestic and imported animal foods for pesticide chemical residues. The FDA's Center for Veterinary Medicine (CVM) directs this portion of the Agency's surveillance program via its Animal Food Contaminants Program. CVM's program focuses on animal food that is consumed by livestock and poultry animals that ultimately become or produce food for human consumption, although some pet food samples are also included.

Analytical Methods and Pesticide Coverage

To analyze large numbers of samples with unknown pesticide treatment history, the FDA uses multi-residue methods (MRMs) capable of simultaneously determining many different pesticide chemical residues. These MRMs are also able to detect many metabolites, impurities, and alteration products of pesticides, as well as selected industrial chemicals. In addition, the FDA uses selective residue methods (SRMs) that target specific pesticides. SRMs are sometimes needed to analyze pesticides that are not adequately extracted or detected using standard MRMs or to target specific pesticide/commodity combinations. The FDA pesticide SRMs are optimized to determine one or several specific pesticide chemical residues in foods. They are more resource intensive and therefore employed more judiciously. The complete list of pesticides analyzed in FY 2022 is provided in Appendix A.

The FDA pesticide methods can detect approximately 76 percent of the pesticides with current or revoked EPA tolerances in Title 40 of the U.S. Code of Federal Regulations (CFR) part 180, as well as nearly 400 other pesticide chemical residues that have no EPA

tolerance. † By testing for pesticides without EPA tolerances, the FDA provides protection against pesticides that do not have EPA approval. The number of compounds (pesticides and industrial chemicals) in the analytical scope increased compared to FY 2021 (757 total compounds in FY 2022 vs. 740 in FY 2021). The FDA's continual modernization process includes removal of obsolete or rarely detected pesticides and industrial chemicals from the scope, as well as review of new pesticides registered by EPA for possible addition to the scope. FDA acknowledges that some pesticides with EPA-established tolerances are not part of the current FDA testing scope, and the FDA does not know the extent to which exposure to these pesticides may occur in the foods that the FDA regulates.

The lower limit of residue measurement in the FDA's determination of a specific pesticide is well below typical tolerance levels, which range from 0.01 to over 100 parts per million (ppm). Most pesticides analyzed can be quantified at the FDA's default limit of quantitation (LOQ) of 0.01 ppm. Residue levels detected above the limit of detection (LOD) but below the LOQ are designated as "trace" values.

The FDA conducts ongoing research to update its pesticide residue monitoring program. This research includes testing the behavior of new or previously untested pesticides through existing analytical methods, as well as developing new methods to improve efficiencies and detection capabilities. Newer extraction procedures and more sensitive detection techniques have increasingly replaced older methods, allowing for more efficiency in pesticide testing.

FDA Total Diet Study

An important complement to the FDA's regulatory pesticide residue monitoring program is TDS. Through TDS the FDA monitors levels of pesticide chemicals, toxic and nutritional elements, industrial chemicals, and radionuclides in foods representing the totality of the American diet. TDS is distinct from the FDA's regulatory pesticide residue monitoring program and is focused on information gathering rather than enforcement. Regulatory monitoring determines pesticide chemical residues primarily in raw commodities, whereas TDS monitors foods prepared table-ready for consumption. TDS uses a modified version of the regulatory program extraction method that is too time-intensive for rapid regulatory follow-up, but it allows detection of pesticides at levels 10-100 times lower than in the regulatory monitoring program, i.e., residue levels as low as 0.1 parts per billion (ppb). Data from TDS can be used to calculate exposures to pesticides, nutrients, and contaminants from the U.S. diet, and to suggest potential areas of focus for the FDA's food safety and nutrition programs. TDS pesticide results through FY 2017 were included in the pesticide residue monitoring program annual reports. TDS pesticide results from FY 2018 on will be posted separately on the FDA's TDS website, along with additional information about the history and design of the TDS.

[†] Additional information on EPA tolerances for pesticide ingredients can be found at: https://www.epa.gov/pesticide-tolerances/how-search-tolerances-pesticide-ingredients-code-federal-regulations (accessed May 28, 2023).

Cooperative Agreements and International Activities

The FDA collaborates with local, state, federal, and international authorities, leveraging their programs and capacities to maximize the effectiveness of its pesticide program. For example, the FDA and USDA have a Memorandum of Understanding (MOU) in which the USDA alerts the FDA monthly of presumptive tolerance violations they find in the PDP. The FDA uses this information when designing the annual pesticide residue monitoring program, and for directing immediate sample collection efforts, as appropriate.

FDA-State Cooperation

The FDA field offices interact with their counterparts in many states to enhance the effectiveness of the Agency's pesticide residue monitoring program. Partnership agreements and MOUs have been established between the FDA and many state agencies. These agreements provide for more efficient residue monitoring by both parties by coordinating efforts, broadening coverage, and eliminating duplication of effort. These agreements are specific to each state and take into account available resources. The agreements stipulate how the FDA and the state will jointly plan work for collecting and analyzing samples, sharing data, and enforcing compliance follow-up responsibilities for individual commodities of domestic and import products.

International Activities

As an agency of the U.S. government, the FDA is subject to the obligations placed on the World Trade Organization (WTO) members by the WTO Agreement on the Application of Sanitary and Phytosanitary Measures (SPS Agreement). The FDA's enforcement of pesticide residue tolerances and monitoring activities falls under the definition of sanitary measures within the SPS Agreement. The FDA's obligations under this agreement include the requirement that its measures are based on an assessment, as appropriate to the circumstances, of the risk to human and animal life or health, and on international standards except when a more stringent standard can be scientifically supported. The measures must also be applied equally to domestic and import products unless there is scientifically based justification for doing otherwise. Similarly, the FDA is subject to obligations arising from several bilateral and multilateral free trade agreements with U.S. trading partners that contain provisions on sanitary measures that are consistent with the provisions of the SPS Agreement.

The FDA pesticide residue monitoring activities, for domestic and imported products, are a part of the Agency's overall food safety programs and are in keeping with these international obligations. Additionally, arrangements the FDA makes with other countries with respect to food safety programs, and the activities that the FDA carries out internationally with respect to food safety, can also affect how the agency's pesticide residue monitoring is conducted.

The FDA maintains a number of cooperative arrangements with counterpart agencies in foreign governments, including MOUs and Confidentiality Commitments. These arrangements most often contain information-sharing provisions that encompass the ability to share analytical findings about pesticide residues, while protecting any confidential information from external disclosure. Several of these MOUs have specific provisions

relating to pesticide residue information sharing or cooperative efforts relating to pesticide residues.

The FDA participates regularly in meetings with food safety regulatory agencies of foreign governments in a variety of settings, including bilateral and multilateral fora and in formal and informal technical and policy meetings. The FDA carries out bilateral discussions on food safety with our regulatory partners from around the world; pesticide control programs and pesticide residue issues can be subjects for discussion at these meetings. Multilateral fora in which the FDA participates include the Food Safety Cooperation Forum (FSCF) of the Asia-Pacific Economic Cooperation (APEC), which promotes regulatory cooperation in food safety including information sharing on pesticide MRLs.

The FDA also participates in the work of international standards-setting organizations, including that of the <u>Codex Alimentarius Commission (Codex</u>). Within Codex, the FDA is an active participant in the work of the Codex Committee on Pesticide Residues.

Results and Discussion

This report discusses results of the FY 2022 FDA pesticide residue monitoring program. Additionally, the report examines data to evaluate import products that may warrant special attention.

In FY 2022, the FDA analyzed 3,030 samples under the regulatory monitoring program, of which 2,800 were human foods and 230 were animal foods. Results for the testing of human and animal foods are reviewed under separate headings, "Regulatory Monitoring of Human Foods" and "Regulatory Monitoring of Animal Foods." Sampling and analytical data were obtained from the FDA Field Accomplishment and Compliance Tracking System (FACTS) database. Results in this report represent samples with a collection date occurring in FY 2022.

Sample collection in FY 2022 was moderately impacted by the Covid-19 pandemic. Although sample collection increased relative to the FY 2020 and FY 2021 collections, approximately 35% fewer samples were collected for the human food pesticide monitoring program and 37% fewer for the animal food pesticide monitoring program in FY 2022 compared with FY 2019 (the most recent year not impacted by the Covid-19 pandemic).

Regulatory Monitoring of Human Foods

The 2,800 human foods analyzed in FY 2022 include 731 domestic samples and 2,069 import samples. Results for the domestic samples are tabulated in Appendix B, "Analysis of Domestic Human Foods by Commodity Group in FY 2022," and results for the import samples are tabulated in Appendix C, "Analysis of Import Human Foods by Commodity Group in FY 2022." Each appendix includes information on the total number of samples analyzed, the number and percentage of samples with no residues detected, and the number and percentage of violative samples including the nature of the violation (over-tolerance vs. no-tolerance). Results are summarized for all samples analyzed, by commodity groups and by subgroups.

Results

Of the 731 domestic samples analyzed in FY 2022, 96.2% were in compliance and 42.7% had no detectable residues (<u>Appendix B</u>). Samples collected under the domestic commodity groups "Fruits" and "Vegetables" accounted for the majority (75.5%) of domestic samples.

Figure 1 summarizes the number of samples analyzed and the residue findings in domestic samples by commodity groups. For the grains and grain products commodity group, no residues were detected in 44.0% of the 25 samples analyzed and no samples contained violative residues. For the milk/dairy products/eggs commodity group, no residues were detected in 90.9% of the 66 samples analyzed and no samples contained violative residues. For the fish/shellfish/other aquatic products commodity group, no residues were detected in 92.3% of the 13 samples analyzed and no samples contained violative residues. In the fruits commodity group, no residues were found in 20.3% of the 197 samples analyzed and three samples (1.5%) contained violative residues. For the vegetables commodity group, no residues were found in 38.6% of the 355 samples analyzed and 23 samples (6.5%)

contained violative residues. In the commodity group of other food products, consisting largely of nuts, no residues were found in 69.3% of the 75 samples analyzed and 2 samples (2.7%) contained violative residues.

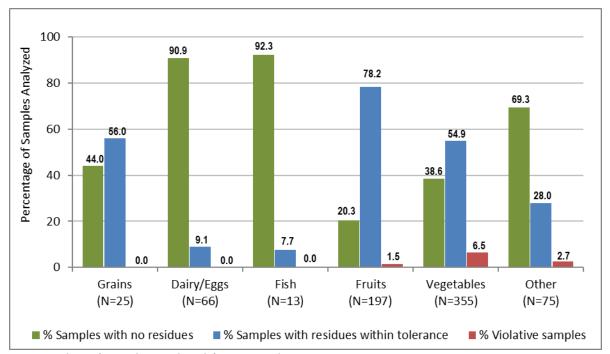


Figure 1. Results of Domestic Human Food Samples by Commodity Group

N = Number of samples analyzed for commodity group

Of the 2,069 import samples analyzed in FY 2022, 89.5% were in compliance and 44.6% had no detectable residues (<u>Appendix C</u>). Fruits and vegetables accounted for the majority (85.5%) of import samples.

Figure 2 summarizes the number of samples analyzed and the residue findings in import samples by commodity groups. In the import grains and grain products commodity group, no residues were detected in 58.0% of the 88 samples analyzed and 11 samples (12.5%) contained violative residues. No samples were collected for the import milk/dairy products/eggs commodity group. For the import fish/shellfish/other aquatic products commodity group, no residues were detected in 85.3% of the 75 samples analyzed and two samples (2.7%) contained violative residues. For the import fruit commodity group, no residues were detected in 35.8% of the 604 samples analyzed and 45 samples (7.5%) contained violative residues. For the import vegetables commodity group samples, no residues were detected in 42.7% of the 1165 samples and 147 samples (12.6%) had violative residues. In the commodity group of other import food products, consisting largely of seeds and seed products, no residues were detected in 67.9% of the 137 samples analyzed and 12 samples (8.8%) had violative residues.

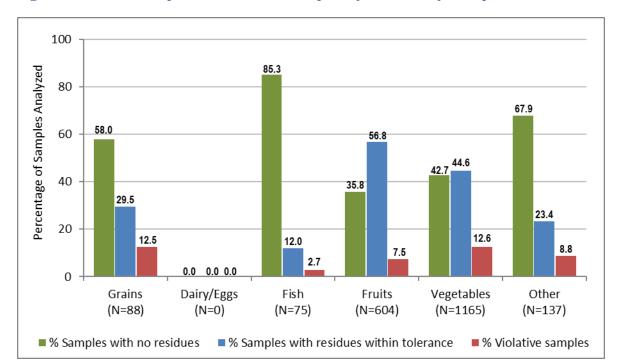


Figure 2. Results of Import Human Food Samples by Commodity Group

N = Number of samples analyzed for commodity group

Overall Results for Domestic and Import Human Food Samples

In total, 731 domestic and 2,069 import human food samples were collected and analyzed for the pesticides listed in <u>Appendix A</u>. No residues were found in 42.7% of domestic samples and 44.6% of import samples (Figure 3). Violative residues were found in 3.8% of the domestic samples and 10.5% of the import samples. The violation rates for both domestic and import samples in FY 2022 were consistent with recent years; between FY 2016-2021, the domestic violation rate ranged from 0.9-3.8% and the import violation rate ranged from 9.8 to 12.9%.

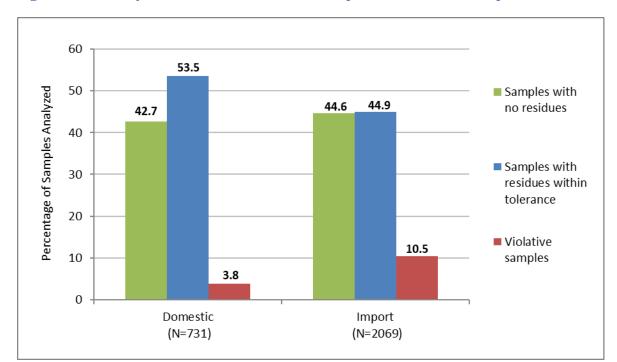


Figure 3. Summary of Results of Domestic and Import Human Food Samples

N = Number of samples analyzed for commodity group

For all commodity groups, the violation rate was higher for import samples. For the category of grains, 12.5% of import samples were violative; however, none of the domestic grain samples were violative. Similarly, 7.5% of the import fruit samples were violative compared with 1.5% of the domestic fruit samples, and 12.6% of import vegetable samples were violative, whereas 6.5% of domestic vegetable samples were violative. In the commodity group of other food products, the violation rate was 8.8% for import samples compared with 2.7% for domestic samples.

Of the 28 domestic violative samples, 26 contained pesticide chemical residues that have no EPA tolerance, i.e., no-tolerance violations, and five contained pesticide chemical residues that exceeded an EPA tolerance, i.e., over-tolerance violations. Three samples had both no-tolerance and over-tolerance violations for different pesticides.

Of the 217 import violative samples, 188 had no-tolerance violations and 52 had over-tolerance violations; 23 samples had both no-tolerance and over-tolerance violations for different pesticides.

Geographic Coverage

Domestic: A total of 731 domestic samples were collected from 41 states. Table 1 lists the number of domestic samples from each state and territory, in descending order. No domestic samples were collected from the states of Alaska, Delaware, Maryland, Montana, New Hampshire, Utah, Vermont, West Virginia, Wyoming, or the District of Columbia.

Table 1. Domestic Samples Collected and Analyzed per State

State	Samples (N)
California	138
Illinois	105
Kansas	63
New York	56
Florida	29
Texas	28
Georgia	25
Ohio	24
Wisconsin	22
Tennessee	21
Massachusetts	21
Iowa	21
Washington	20
Colorado	18
Missouri	17
South Carolina	16
North Carolina	14
Louisiana	12
Michigan	10
Alabama	7
Arizona	7

State	Samples (N)
Oregon	7
Nebraska	7
Connecticut	6
Maine	6
New Jersey	5
Minnesota	5
Pennsylvania	4
South Dakota	3
Nevada	2
Indiana	2
Arkansas	1
Virginia	1
Rhode Island	1
Mississippi	1
Hawaii	1
New Mexico	1
Idaho	1
North Dakota	1
Kentucky	1
Oklahoma	1

Imports: A total of 2,069 import samples were collected representing food shipments from 81 countries/economies. Table 2 lists the number of samples and names of countries/economies from which ten or more samples were collected, in order of decreasing number of samples. Table 2a lists the countries/economies that had fewer than ten samples collected, in alphabetical order.

Table 2. Import Samples per Country/Economy of Origin for Which Ten or More Samples Were Collected and Analyzed

Country	Samples (N)
Mexico	827
Canada	185
China	141
India	87
Peru	68
Chile	63
Guatemala	53
Turkey	52
Vietnam	41
Dominican Republic	32
Pakistan	29
Thailand	28
Argentina	27
United States*	27
Afghanistan	26

Country	Samples (N)
Colombia	23
Korea, Republic Of (South)	23
Costa Rica	22
Lebanon	21
Honduras	20
Indonesia	20
Egypt	18
Ecuador	16
South Africa	12
Brazil	11
El Salvador	11
Italy	11
Serbia	11
Morocco	10

^{*}Indicates import samples collected while in interstate commerce.

Table 2a. Countries/Economies of Origin from Which Fewer Than Ten Samples Were Collected and Analyzed

Albania	Israel	Poland
Algeria	Jamaica	Russia
Armenia	Japan	Saudi Arabia
Austria	Jordan	Spain
Bangladesh	Kenya	Sri Lanka
Belgium	Lithuania	Sweden
Belize	Macedonia	Taiwan
Bolivia	Madagascar	Togo
Bulgaria	Malaysia	Tunisia
Burkina Faso	Moldova	Uganda
Congo, Dem Rep of	Mozambique	United Arab Emirates
Ethiopia	Myanmar	United Kingdom
France	Netherlands	Uruguay
Germany	New Zealand	Uzbekistan
Ghana	Nicaragua	Venezuela
Greece	Nigeria	West Bank
Iraq	Philippines	Yemen
Ireland		

Pesticides Detected

In FY 2022, FDA pesticide methods could detect the 757 pesticides and industrial chemicals listed in <u>Appendix A</u>. Of these chemicals, residues of 209 different pesticides were detected in the samples analyzed. They are listed in Table 3 in order of frequency of detection along with the number of samples in which they were found. The number of pesticides in the analytical scope increased compared to FY 2021 (740 in FY 2021) as part of the FDA's commitment to continual improvement. No new pesticides were detected in FY 2022 that had not been detected previously by the FDA regulatory pesticide monitoring program.

Table 3. Pesticides Found in Human Foods in FY 2022 Listed in Order of Frequency

Pesticide	Samples (N)
Azoxystrobin	256
Imidacloprid	256
Fludioxonil	189
Boscalid	181
Cypermethrin	177
Pyraclostrobin	164
Acetamiprid	144
Thiamethoxam	134
Fluopyram	125
Tebuconazole	123
Chlorpyrifos	111
Difenoconazole	109
Lambda-cyhalothrin	106
Chlorantraniliprole	101
Bifenthrin	99
Clothianidin	98
Pyrimethanil	98
Thiabendazole	98
Cyprodinil	97
Carbendazim [†]	93
Chlorothalonil	88
Permethrin	88
Imazalil	76
Metalaxyl	76
Propamocarb	75
Flonicamid	71
Methoxyfenozide	70
Malathion	62
Linuron	60

Pesticide	Samples (N)
Flupyradifurone	56
Glyphosate	54
Propiconazole	53
Trifloxystrobin	53
Myclobutanil	52
Fluxapyroxad	47
Cyfluthrin	46
Captan	44
Chlorfenapyr	44
Dimethomorph	44
Dinotefuran	42
Thiophanate-methyl	42
Methomyl	39
Penthiopyrad	38
Spinetoram	38
Cyantraniliprole	37
Thiacloprid	37
Chlorpropham	35
Fenhexamid	35
Flutriafol	33
DCPA	32
Piperonyl butoxide	32
Sulfoxaflor	32
Fenpropathrin	31
Mandipropamid	30
Buprofezin	26
Fluopicolide	26
Indoxacarb	26
Pyridalyl	26

Pesticide	Samples (N)
Spirodiclofen	26
Bifenazate	25
Dimethoate	25
Spinosad	25
Methamidophos	24
Spirotetramat	24
Acephate	23
Ametoctradin	23
Iprodione	23
Novaluron	23
Quinoxyfen	23
Cyromazine	22
Pyriproxyfen	22
Fipronil	19
Spiromesifen	19
Diafenthiuron	18
Diflubenzuron	18
Carbaryl	17
Fenamidone	17
Hexythiazox	17
Tolfenpyrad	17
Esfenvalerate	15
Fenbuconazole	15
Deltamethrin	14
Flubendiamide	14
Metrafenone	14
Ethoxyquin	13
Oxamyl	13
Phenylphenol, o-	13
Phosmet	13
2,4-D	12
Etoxazole	12
Oxathiapiprolin	12
Cyazofamid	11
Fenbutatin oxide	11
Fenpyroximate, e-	11
Cyflumetofen	10
DDT	10
Dodine	10
MGK 264	10

Pesticide	Samples (N)
Pirimiphos methyl	10
Tetraconazole	10
Clopyralid	9
Diazinon	9
Profenofos	9
Resmethrin	9
Tricyclazole	8
Cyflufenamid	7
Diphenylamine	7
Isofetamid	7
Isoprothiolane	7
Penconazole	7
Pendimethalin	7
2,6-DIPN	6
Abamectin	6
Atrazine	6
Hexaconazole	6
Imazamox	6
Prochloraz	6
Pyridaben	6
Dichlorvos	5
Famoxadone	5
Fluoxastrobin	5
Haloxyfop	5
Prometryn	5
Pymetrozine	5
Quinclorac	5
Quintozene	5
4-CPA	4
Dicloran	4
Fenvalerate	4
Glufosinate	4
Lufenuron	4
Procymidone	4
Pyriofenone	4
Triadimenol	4
Triflumizole	4
Trifluralin	4
Cyproconazole	3
Emamectin benzoate	3

Pesticide	Samples (N)
Ethaboxam	3
Ethirimol	3
Fenazaquin	3
Fenobucarb	3
Fluvalinate	3
Imazapyr	3
Isopyrazam	3
Monocrotophos	3
Propargite	3
Carbofuran	2
Carboxin	2
Cymoxanil	2
Dieldrin	2
Endosulfan	2
Fenitrothion	2
Flusilazole	2
Fosthiazate	2
Imazapic	2
Kresoxim-methyl	2
Methoprene	2
Metominostrobin	2
Pronamide	2
Pydiflumetofen	2
Teflubenzuron	2
Tetradifon	2
Benzovindiflupyr	1
Bupirimate	1
Cadusafos	1
Chlorfenvinphos, total	1
Chlorfluazuron	1
Chlorpyrifos methyl	1
Clethodim	1
Clofentezine	1
Diniconazole	1
Diuron	1
Ethoprop	1

Pesticide	Samples (N)
Etofenprox	1
Fenpropidin	1
Fenpropimorph	1
Fenuron	1
Ferimzone	1
Flumioxazin	1
Fluquinconazole	1
Fluroxypyr	1
Flutolanil	1
Folpet	1
Forchlorfenuron	1
Formetanate HCl	1
Imazethapyr	1
Isoprocarb	1
Lindane	1
MCPA	1
Mepanipyrim	1
Metaflumizone	1
Metaldehyde	1
Oxyfluorfen	1
Pencycuron	1
Phenthoate	1
Proquinazid	1
Prothioconazole	1
Pyrifenox	1
Pyrifluquinazon	1
Quizalofop	1
Rotenone	1
Simazine	1
Spiroxamine	1
Tebufenozide	1
Tefluthrin	1
Thifluzamide	1
Thiodicarb	1
Triflumuron	1

[†]Carbendazim is both a fungicide and a degradant of thiophanate methyl; it was reported under the category of thiophanate methyl in the 2015 and 2016 pesticide residue monitoring reports.

Regulatory Monitoring of Animal Foods

In FY 2022, FDA analyzed 230 animal food samples for pesticides. The agency found that 95.6% of domestic and 100% of import animal food samples were compliant with federal standards. Figure 4 summarizes the number of samples analyzed and residue findings in domestic and import samples.

Figure 4. Summary of Results of Domestic and Import Animal Food Samples

N = Number of samples analyzed for commodity group

Of the 230 animal food samples, 113 samples were domestic, and 117 samples were imports. No residues were found in 43 (38.1%) of the domestic samples, and five (4.4%) of the samples were violative. Of the import samples, 59 (50.4%) contained no residues and no samples were violative.

The violation rate of 4.4% for domestic animal foods in FY 2022 is greater than the violation rate of 0% in FY 2021 and FY 2020, and slightly higher than the violation rates for FY 2014-2019, i.e., 0.8-3.8%. The violation rate of 0% for import animal foods is below the violation rates for FY 2014-2021; i.e., 1.6-5.6%.

Table 4 summarizes residue findings for seven different animal food commodity types.

Table 4. Summary of Animal Foods by Commodity Type

Commodity Type	Samples Analyzed N	Without Residues N (%) [†]	Violative Samples N (%) [†]
Totals – All Samples	230	102 (44.3)	5 (2.2)
Whole and Ground Grains/Seeds	134	66 (49.3)	3 (2.2)
Mixed Livestock Food Rations	25	7 (28.0)	0 (0)
Medicated Livestock Food Rations	7	3 (42.9)	0 (0)
Plant Products/Byproducts	55	23 (41.8)	2 (3.6)
Hay and Silage	3	2 (66.7)	0 (0)
Animal Byproducts	1	1 (100)	0 (0)
Pet Food/Treats	5	0 (0)	0 (0)

[†]Percentage of the number of samples analyzed per commodity type.

Commodities commonly used to feed livestock that produce food for human consumption, i.e., Whole and Ground Grains/Seeds, Mixed Livestock Food Rations, Medicated Livestock Food Rations, Plant Products/Byproducts, and Hay and Silage, comprised the majority (97.4%) of the samples analyzed. Of these 224 samples, 5 (2.2%) were violative.

Geographic Coverage

Domestic: A total of 113 domestic animal food samples were collected from 26 states. Table 5 lists the number of domestic samples from each state in descending order. No domestic samples were collected from the U.S. states of Alaska, Arizona, Arkansas, Connecticut, Hawaii, Idaho, Illinois, Iowa, Kentucky, Louisiana, Michigan, Montana, Nevada, New Hampshire, New Jersey, New Mexico, Oregon, Rhode Island, South Dakota, Utah, Virginia, Washington, West Virginia, Wyoming, and the District of Columbia.

Table 5. Domestic Animal Food Samples Collected and Analyzed per State

State/Territory	Samples (N)
California	16
Kansas	12
Pennsylvania	12
Nebraska	9
Missouri	7
Wisconsin	7
Tennessee	6
Georgia	5
Minnesota	5
Ohio	5
North Dakota	3
New York	3
South Carolina	2

State/Territory	Samples (N)
Vermont	2
Oklahoma	2
Alabama	2
Maine	2
Mississippi	2
Delaware	2
Texas	2
Florida	2
Colorado	1
Indiana	1
Maryland	1
North Carolina	1
Massachusetts	1

Imports: A total of 117 import samples were collected representing animal food samples from 13 countries. Table 6 lists the number of samples and names of the countries of origin in order of decreasing number of samples.

Table 6. Import Animal Food Samples Collected and Analyzed per Country of Origin

Country	Samples (N)
Canada	97
China	3
Germany	3
United States*	3
Italy	2
Netherlands	2
Ireland	1
Poland	1
Thailand	1
Turkey	1
Uganda	1
Ukraine	1
United Kingdom	1

^{*} Indicates import samples collected while in interstate commerce

Pesticides Detected

In FY 2022, 52 different pesticide residues were found in 128 of the 230 animal food samples analyzed. They are listed in Table 7 in decreasing order of detection along with the number of samples in which they were found.

Animal foods were analyzed for 757 different pesticides and industrial chemicals using the FDA pesticide MRM and SRM methods (<u>Appendix A</u>). Five of the 230 samples had violative findings. The glyphosate SRM was used to test 103 of the animal food samples (57 domestic and 46 import) for glyphosate and glufosinate. Glyphosate was detected in 65 samples (31 domestic and 34 import), but none were violative. The acid herbicides SRM was used to test 120 of the samples (51 domestic and 69 import) for the presence of acid herbicides. Most of the samples (93.3%) had no acid herbicide residues and two domestic samples were violative.

Table 7. Pesticides Found in Animal Foods in FY 2022 Listed in Order of Frequency

Pesticide	Samples (N)
Glyphosate	65
Malathion	34
Piperonyl butoxide	22
Ethoxyquin	16
Diafenthiuron	9
Tebuconazole	8
Azoxystrobin	6
Methoprene	5
2,4-D	4
Acetamiprid	4
Boscalid	4
Deltamethrin	4
Diflubenzuron	4
Glufosinate	4
Phenylphenol, o-	4
Clopyralid	3
Cypermethrin	3
Difenoconazole	3
Fenbutatin oxide	3
Fludioxonil	3
Lambda-cyhalothrin	3
Pirimiphos methyl	3
Propiconazole	3
Thiamethoxam	3
Bifenthrin	2
Chlorantraniliprole	2

Pesticide	Samples (N)
Chlorpyrifos methyl	2
DEF	2
Fluxapyroxad	2
Acephate	1
Ametoctradin	1
Chlorfenapyr	1
Clothianidin	1
Cyprodinil	1
Dichlorvos	1
Diniconazole	1
Flonicamid	1
Fluopyram	1
Imazamox	1
MCPA	1
Methoxyfenozide	1
Myclobutanil	1
Oxadiazon	1
Permethrin	1
Pyraclostrobin	1
Pyriproxyfen	1
Saflufenacil	1
Spinosad	1
Tetraconazole	1
Thidiazuron	1
Trifloxystrobin	1
Trifluralin	1

Focused Sampling

In FY 2022, FDA conducted pesticide analyses for the field assignment "Domestically Produced Animal-Derived Foods" (Animal-Derived Foods) for which selected animal-derived domestic human foods were analyzed for pesticides and other chemical contaminants. FDA collected and analyzed 96 samples, consisting of 36 milk, 30 shell egg, 15 honey, and 15 game meat samples. Results are listed in Table 8.

Table 8. Pesticides Found in Samples Analyzed for the Animal-Derived Foods Assignment

Commodity	mmodity Samples Analyzed N		Violative Samples N (%)	
Total – all samples	96	87 (90.6)	1 (1.0)	
Milk	36	35 (97.2)	0	
Eggs	30	25 (83.3)	0	
Honey	15	13 (86.7)	1 (6.7)	
Bison	9	8 (88.9)	0	
Rabbit	6	6 (100)	0	

No violative pesticide residues were found in 99% of the animal-derived food commodities, and 90.6% of the samples contained no residues. One sample of honey contained 0.299 ppm flonicamid. Flonicamid is registered for use on a variety of fruits and vegetables and was likely detected in honey due to inadvertent contamination introduced by bees as they collect nectar from flowers.

Imported Human Food Products That May Warrant Special Attention

The design of the FDA pesticide program focuses on products that have a history of violations or are suspected of violations, based on information such as reports from other agencies and pesticide usage data. Historically, the violation rate for import foods is higher than for domestic foods; results from the regulatory monitoring of human foods in FY 2022 continue that trend. The violation rate for import human foods (10.5%) was nearly 3 times higher than the rate for domestic foods (3.8%). The majority of the violations for import commodities are no-tolerance violations, with approximately 78% of the violative residues < 0.1 ppm.

The following criteria were applied to the FY 2022 data to select import human food commodities that may warrant special attention, such as increased sampling in the future:

- commodities with at least 20 samples analyzed OR with a minimum of 3 violations, and
- a violation rate of 10% or higher.

Table 9 lists the import human food commodities analyzed in FY 2022 that meet the above criteria. The commodities are listed alphabetically and include the total number of samples analyzed and violation rate per commodity.

Table 9. Import Human Food Commodities That May Warrant Special Attention

Commodity [†]	Samples Analyzed (N)	Violation Rate (%)		
Black eye peas	7	57.1		
Blackberries	29	17.2		
Bok choy	14	21.4		
Carrots*	48	18.8		
Celery	27	29.6		
Cilantro*	35	57.1		
Dates	20	10.0		
Ginger	20	15.0		
Grapes*	50	14.0		
Lettuce, leaf	16	18.8		
Limes	33	15.2		
Mung beans	23	13.0		
Mushrooms and fungi*	77	18.2		
Olive oil	16	18.8		
Onions, leeks, scallions, shallots*	74	13.5		
Peas	51	23.5		
Peppers, hot*	75	28.0		
Prickly pear*	5	60.0		
Radishes*	25	20.0		
Rice*	59	13.6		
Sesame seeds	35	17.1		
Spinach	15	20.0		
Strawberries	46	10.9		

[†]Data listed for the commodities in this table are based upon specific product definitions and may not be directly comparable to product summary subcategories listed in Appendix C.

^{*}Commodity was on the FY 2021 table of import commodities warranting special attention.

References

- 1. Food and Drug Administration Foods Program. (2019) *Guidelines for the Validation of Chemical Methods in FDA Food, Feed, Cosmetics and Veterinary Products, 3rd Edition*. https://www.fda.gov/media/81810/download.
- 2. Code of Federal Regulations, Title 40, Part 180. https://ecfr.io/Title-40/pt40.26.180.
- 3. Roy, Ronald R.; Albert, Richard H.; Wilson, Patrick; Laski, Ronald R.; Roberts, James I.; Hoffmann, Terry J.; Bong, Rodney L.; Bohannon, Byrons O.; & Yess, Norma J. (1995) U.S. Food and Drug Administration Pesticide Program: Incidence/Level Monitoring of Domestic and Imported Pears and Tomatoes. *Journal of AOAC Int.* 78(4), 930-940. https://doi.org/10.1093/jaoac/78.4.930
- 4. Roy, Ronald R., Wilson, Patrick; Laski, Ronald R.; Roberts, James I.; Weishaar, Joseph A.; Bong, Rodney L.; & Yess, Norma J. (1997) Monitoring of Domestic and Imported Apples and Rice by the U.S. Food and Drug Administration Pesticide Program, *Journal of AOAC Int*, 80(4), 883-894. https://doi.org/10.1093/jaoac/80.4.883
- 5. Food and Drug Administration. (1999) *Pesticide Analytical Manual, Volume I, 3rd Ed., Chapter I, Section 105*. https://www.fda.gov/media/74473/download.
- 6. Code of Federal Regulations, Title 21 Parts 573.380 and 573.400, https://ecfr.io/Title-21/cfr573_main.
- 7. Liang, Chia-Pei; Sack, Chris; McGrath, Sara; Cao, Yu; Thompson, Clinton J.; & Robin, Lauren Posnick. (2021) U.S. Food and Drug Administration Regulatory Pesticide Residue Monitoring of Human Foods: 2009-2017. *Food Additives & Contaminants: Part A*, 38(9), 1520-1538. https://doi.org/10.1080/19440049.2021.1934574

Appendices

Appendix A lists the 757 pesticides and industrial chemicals analyzed using FDA methods in FY 2022. The MRM method is used to analyze the majority of pesticides (726), and two SRMs were used to analyze (1) glyphosate, glufosinate, and their degradation products (glyphosate SRM) and (2) 27 selected acid herbicides (acid herbicides SRM). In addition to these chemicals, FDA analytical procedures detect other metabolites and isomers associated with the pesticides listed in Appendix A.

All residue findings for human foods are summarized in Appendices B (domestic) and C (import). In FY 2022, 127 different domestic human food commodities and 332 different import human food commodities were tested. In both appendices, all commodities have been assigned to the same six commodity groups; however, no import milk, dairy products, or eggs were analyzed in FY 2022:

Grains/Grain Products

Milk/Dairy Products/Eggs

Fish/Shellfish/Other Aquatic Products

Fruits

Vegetables

Other Food Products

Commodities are further categorized within each commodity group. For example, the subcategories for domestic commodities listed under the "Grains and Grain Products" commodity group in Appendix B include:

Corn and corn products

Oats and oat products

Rice and rice products

Soybeans and soybean products

Wheat and wheat products

Each of these subcategories includes commodities derived from a single agricultural commodity. For example, the subcategory "Wheat and wheat products" includes commodities composed exclusively, or almost exclusively, from wheat, such as whole wheat grain, milled wheat, wheat flour, enriched wheat flour, wheat germ, wheat malt, wheat bran, and wheat gluten.

The subcategories within each commodity group may differ between the appendices for domestic and import commodities. This is because the numbers and kinds of individual commodities available are different for domestic and import commodities. For example, under the "Fruit" commodity group, 41 subcategories are listed for the import samples in Appendix C, but only 23 subcategories are listed for the domestic samples in Appendix B. The additional import "Fruit" subcategories are mostly for fruits not available domestically.

Appendix A. Pesticides and Industrial Chemicals Analyzed by FDA Pesticide Methods in FY 2022

2,4-DB methyl ester Benoxacor Carfentrazone ethyl ester

2,6-DIPN Carpropamid Bentazon 3,4-Dichloroaniline³ Benthiavalicarb-isopropyl Chlorantraniliprole 4-CPA¹ Benzovindiflupyr Chlorbenside Abamectin Benzoximate Chlorbicyclen Acephate Benzoylprop ethyl Chlorbromuron Acequinocyl Benzpvrimoxan Chlorbufam Acetamiprid Berberine Chlordane Acetochlor **BHC** Chlordecone

Acibenzolar-S-methylBicyclopyroneChlordimeformAcifluorfen¹BifenazateChlorethoxyfosAcifluorfen methyl esterBifenoxChlorfenapyrAclonifenBifenthrinChlorfenetholAcrinathrinBinapacrylChlorfenvinphos

Akton Biphenyl Chlorfenvinphos methyl

Bistrifluron Chlorfluazuron Alachlor Aldicarb Bitertanol Chlorimuron-ethyl Aldrin Bixafen Chlormephos Allethrin **Boscalid** Chlornitrofen Chlorobenzilate Allidochlor Broflanilide Ametoctradin Bromacil Chloroneb Ametryn Bromfenvinphos ethyl Chloropropylate

Ametryn Bromfenvinphos ethyl Chloropropylate
Amicarbazone Bromfenvinphos methyl Chlorothalonil
Amidithion Bromobutide Chlorotoluron
Amidoflumet Bromocyclen Chloroxuron
Aminocarb Bromophos Chlorpropham
Aminopyralid Bromophos-ethyl Chlorpyrifos

Amisulbrom Bromopropylate Chlorpyrifos methyl Bromoxynil¹ **Amitraz** Chlorthiamid Ancymidol Bromoxynil octanoate Chlorthiophos Anilazine Chlozolinate Bromuconazole Anilofos Chromafenozide Bufencarb Aramite **Bupirimate** Cinidon-ethyl

Atraton Butachlor Clodinafop-propargyl

Clethodim

Atrazine Butafenacil Clofentezine
Azaconazole Butamifos Clomazone
Azamethiphos Butralin Clopyralid¹

Buprofezin

Aspon

Azinphos ethyl Butylate Cloquintocet-mexyl

Clothianidin Azinphos-methyl Cadusafos Aziprotryne Cafenstrole Coumaphos Azoxystrobin Captafol Crimidine BAM⁴ Captan Crotoxyphos Beflubutamid Carbaryl Crufomate Carbendazim⁵ Cumyluron Benalaxvl Bendiocarb Carbetamide Cyanazine

CyanofenphosDicofolEndosulfanCyanophosDicrotophosEndrinCyantraniliproleDicrylEPN

Cyazofamid Dicyclanil Epoxiconazole

Cyclafuramid Dieldrin **EPTC** Cycloate Diethatyl-ethyl Esfenvalerate Cycloxydime Diethofencarb Esprocarb Cycluron Difenoconazole Etaconazole Cyenopyrafen Difenoxuron Ethaboxam Cyflufenamid Diflovidazin Ethalfluralin Cyflumetofen Diflubenzuron Ethiofencarb Cyfluthrin Ethiolate Diflufenican Cyhalofop butyl ester Diflufenzopyr¹ Ethion Cymiazole Diflumetorim Ethiprole Cymoxanil Ethirimol Dimefluthrin Cypermethrin Dimefox Ethofumesate Cyphenothrin Dimepiperate Ethoprop Cyprazine Dimethachlone Ethoxyquin Ethychlozate Cyproconazole Dimethachlor Cyprodinil Etobenzanid Dimethametryn Cyprofuram Dimethenamid Etofenprox

Cyromazine Dimethipin Etoxazole Cythioate Dimethirimol Etridiazole Dazomet Dimethoate **Etrimfos DCPA** Dimethomorph Famoxadone **DDT** Dimetilan Famphur **DEET** Dimoxystrobin Fenamidone **DEF** Diniconazole Fenamiphos Dinitramine Fenarimol Deltamethrin Demephion Dinobuton Fenazaflor Demeton Dinocap Fenazaguin Dinoseb Fenbuconazole Desmedipham Desmetryn Dinoseb acetate Fenbutatin oxide

DiafenthiuronDinotefuranFenclorimDialiforDinoterb acetateFenfuramDiallateDiofenolanFenhexamidDiamidafosDiothylFenitrothionDiazinonDioxacarbFenobucarb

DiazinonDioxacarbFenobucarb (BPMC)Dicamba1DioxathionFenothiocarb

Dicapthon Diphenamid Fenoxanil Dichlobenil Diphenylamine Fenoxaprop-ethyl Dichlofenthion Dipropetryn Fenoxycarb Dichlofluanid Disulfoton Fenpiclonil Dichlormid **Ditalimfos** Fenpropathrin Fenpropidin Dichlorophen Dithianon Dichlorprop¹ Dithiopyr Fenpropimorph Dichlorvos Diuron Fenpyrazamine

DiclobutrazolDodemorphFenpyroximate, e-DiclocymetDodineFensonDiclofop¹DrazoxolonFensulfothion

Diclofop-methylEdifenphosFenthionDiclomezineEmamectin benzoateFenuronDicloranEmpenthrinFenvalerate

Ferimzone Fomesafen Isazofos **Fipronil Fonofos** Isobenzan Flamprop-isopropyl Forchlorfenuron Isocarbamid Flamprop-methyl Formetanate Isocarbophos Flonicamid Formothion Isodrin Fluacrypyrim Fosthiazate Isofenphos Fluazifop butyl ester Fosthietan Isofetamid Fluazifop-p-butyl Fuberidazole Isoflucypram Fluazinam Isomethiozin **Furalaxvl** Fluazolate Isoprocarb Furametpyr Furathiocarb Fluazuron Isopropalin Flubendiamide **Furilazole** Isoprothiolane Flubenzimine Furmecyclox Isoproturon Fluchloralin Gardona Isopyrazam Flucycloxuron Glufosinate² Isotianil

Flucythrinate Glyphosate² Isoxadifen-ethyl Fludioxonil Halauxifen-methyl Isoxaflutole Fluensulfone Halfenprox Isoxathion Halofenozide Flufenacet Ivermectin Haloxyfop¹ Jodfenphos Flufenoxuron Haloxyfop-methyl Kadethrin Flufenpyr ethyl Flufiprole Heptachlor Karbutilate Fluindapyr Heptenophos Kinoprene Flumetralin Hexachlorobutadiene Kresoxim-methyl

Flumetsulam Hexachlorophene Lactofen

Flumiclorac-pentyl Hexaconazole Lambda-cyhalothrin

Flumioxazin Hexaflumuron Lenacil Flumorph Hexazinone Leptophos Fluometuron Lindane Hexythiazox Fluopicolide Hydramethylnon Linuron Fluopyram Hydroprene Lufenuron **IBP** Fluoranthene Malathion Fluorene **Imazalil** Mandestrobin Fluorochloridone Imazamethabenz¹ Mandipropamid

Fluorodifen Imazamethabenz methyl ester MCPA¹

Fluoroimide Imazamox¹ MCPA methyl ester

 $MCPB^1$ Imazapic¹ Fluotrimazole Imazapyr¹ Fluoxastrobin Mecarbam Imazaquin¹ Mecoprop¹ Flupyradifurone Imazethapyr1 Fluquinconazole Mefenacet Fluridone Imibenconazole Mefenpyr-diethyl Fluroxypyr¹ **Imidacloprid** Mefluidide Flurprimidol **Imiprothrin** Mepanipyrim Flurtamone Indanofan Meperfluthrin Mephosfolan Flusilazole Indaziflam Fluthiacet-methyl Indoxacarb Mepronil Meptyldinocap Flutianil Inpyrfluxam Metaflumizone Flutolanil Ioxynil Flutriafol Ipconazole Metalaxyl Fluvalinate Ipfencarbazone Metaldehyde Fluxametamide Ipflufenoquin Metamifop Metamitron Fluxapyroxad **Iprodione**

Iprovalicarb

Folpet

Metazachlor

Metconazole Ofurace Pirimiphos methyl

Methabenzthiazuron (MBTZ) Plifenate Orbencarb Methacrifos Orysastrobin Prallethrin Methamidophos Oryzalin Pretilachlor Methfuroxam Oxadiazon Probenazole Methidathion Oxadixyl Prochloraz Oxamyl Procymidone Methiocarb Methomyl Oxathiapiprolin **Prodiamine** Oxpoconazole Profenofos Methoprene Methoprotryne Oxydemeton-methyl Profluralin Methoxychlor Oxydeprofos Profoxydim Methoxyfenozide Oxyfluorfen Prohydrojasmon Methyl trithion Oxythioquinox Promecarb Metobromuron Paclobutrazol Prometon Metofluthrin Parathion Prometryn Metolachlor Parathion methyl Pronamide Metolcarb **PCBs** Propachlor Metominostrobin Pebulate Propamocarb Penconazole Metoxuron Propanil **Propaphos** Metrafenone Pencycuron Pendimethalin Propaguizafop Metribuzin Metsulfuron methyl Penflufen **Propargite** Mevinphos Pentachlorophenol¹ Propazine Mexacarbate Pentanochlor Propetamphos

Metsulfuron methylPenflufenPropargiteMevinphosPentachlorophenol¹PropazineMexacarbatePentanochlorPropetamphosMGK 264PenthiopyradProphamMGK-326PentoxazonePropiconazoleMirexPermethrinPropisochlorMolinatePerthanePropoxurMomfluorothrinPethoxamidPropoxycarbaz

Propoxycarbazone Pethoxamid Monalide Phenkapton Proquinazid Phenmedipham Prosulfocarb Monocrotophos Phenothiazine Prothioconazole Moxidectin $MPPA^2$ Phenothrin **Prothiofos** Myclobutanil Phenthoate Prothoate N-acetylglufosinate² Phenylphenol, o-Prynachlor Phorate Pydiflumetofen Naled Naphthalene Phosalone Pymetrozine Naphthaleneacetamide Phosfolan Pvracarbolid Naproanilide **Pyraclofos** Phosmet Napropamide Phosphamidon Pyraclonil Naptalam **Phoxim** Pyraclostrobin Nicotine Phthalide Pyraflufen ethyl

Nitenpyram Picarbutrazox Pyraziflumid Nitralin Picloram¹ Pyrazophos Pyrazoxyfen Nitrapyrin Picolinafen Nitrofen Picoxystrobin Pyrene Pyrethrins Nitrothal-isopropyl Pindone Pyribencarb Norea Pinoxaden Norflurazon **Piperalin** Pyributicarb Piperonyl butoxide Pyridaben Novaluron **Piperophos** Pvridalvl Noviflumuron

Nuarimol Pirimicarb Pyridaphenthion

Octhilinone Pirimiphos ethyl Pyridate

Pyridinitril Sulprofos Tolclofos methyl Tolfenpyrad **Pyrifenox** Swep Pyrifluquinazon **TCMTB** Tolpyralate **Pyriftalid** Tolyfluanid Tebuconazole Tralkoxydim Pyrimethanil Tebufenozide Pyrimidifen Tebufenpyrad Transfluthrin Pyriminobac-methyl Tebufloquin Triadimefon Tebupirimfos Pyriofenone Triadimenol Pyriproxyfen **Tebutam** Tri-allate Pyroquilon Tebuthiuron Triamiphos Pyroxasulfone Tecnazene Triapenthenol Quinalphos Triazamate Teflubenzuron Ouinclorac1 Tefluthrin Triazophos Ouinoclamine Temephos Triazoxide Quinoxyfen **TEPP** Tributoxy PO₄ Quintozene **Tepraloxydim** Trichlamide Quizalofop¹ Terbacil Trichlorfon Quizalofop ethyl ester **Terbufos** Trichloronat Rabenzazole Terbumeton Triclopyr Triclosan Resmethrin Terbuthylazine Tricyclazole Ronnel Terbutryn Rotenone Tetraconazole Tridemorph Tridiphane Saflufenacil Tetradifon Salithion Tetramethrin Trietazine Schradan Tetrasul Trifenmorph Sebuthylazine Thenylchor Trifloxystrobin Secbumeton Thiabendazole Triflumizole Thiacloprid Triflumuron Sedaxane Thiamethoxam Sethoxydim Trifluralin Silafluofen Thiazopyr Triforine Silthiofam Thidiazuron Trimethacarb Simazine Thifluzamide Triphenyl PO₄ Simeconazole Thiobencarb

Simeconazole Thiobencarb Tris(1,3-dichloro-2-propyl) PO₄
Simetryne Thiocyclam Tris(beta-chloroethyl) PO₄
Spinetoram Thiodicarb Tris(chloropropyl) PO₄

Spinosad Thiofanox Triticonazole Spirodiclofen Tycor Thiometon Spiromesifen Thionazin Uniconazole Spirotetramat Thiophanate-methyl Valifenalate Spiroxamine Thioquinox Vamidothion Sulfentrazone **Tiadinil** Vernolate **Tiafenacil** Vinclozolin Sulfluramid Sulfotepp Tioxazafen Zoxamide Sulfoxaflor

¹Acid herbicide included within the scope of the acid herbicides SRM.

²Glyphosate, glufosinate, and their degradants MPPA (3-(hydroxymethylphosphinyl) propanoic acid) and N-acetylglufosinate are within the scope of the glyphosate SRM.

³3,4-Dichloroaniline is a metabolite of multiple pesticides.

⁴BAM is a degradant of both fluoricolide and dichlobenil.

⁵Carbendazim is both a fungicide and a degradant of thiophanate methyl; it was reported under the category of thiophanate methyl in the 2015 and 2016 pesticide residue monitoring reports.

Appendix B. Analysis of Domestic Human Foods by Commodity Group in FY 2022

Commodity Group	Samples Analyzed (N)	Without Residues N (%) [†]	Violative Samples* N (%) [†]	Over Tolerance Violations (N)	No Tolerance Violations (N)
Totals - All Domestic Samples	731	312 (42.7)	28 (3.8)	5	26
Grains/Grain Products - Totals	25	11 (44.0)	0	0	0
Corn and corn products	3	1 (33.3)	0	0	0
Oats and oat products	8	4 (50.0)	0	0	0
Rice and rice products	6	2 (33.3)	0	0	0
Soybeans and soybean products	4	2 (50.0)	0	0	0
Wheat and wheat products	4	2 (50.0)	0	0	0
Milk/Dairy Products/Eggs - Totals	66	60 (90.9)	0	0	0
Eggs	30	25 (83.3)	0	0	0
Milk, cream and cheese products	36	35 (97.2)	0	0	0
Fish/Shellfish/Aquatic Products - Totals	13	12 (92.3)	0	0	0
Aquaculture seafood	4	4 (100)	0	0	0
Fish and fish products	5	4 (80.0)	0	0	0
Shellfish and Crustaceans	4	4 (100)	0	0	0
Fruits - Totals	197	40 (20.3)	3 (1.5)	1	2
Apple fruit/juice	14	2 (14.3)	0	0	0
Apricot fruit/juice	1	0	0	0	0
Avocadoes	11	9 (81.8)	0	0	0
Blackberry fruit/juice	5	2 (40.0)	0	0	0
Blueberry fruit/juice	8	2 (25.0)	0	0	0
Cantaloupe	8	3 (37.5)	0	0	0
Cherry fruit/juice	13	0	0	0	0
Cranberry fruit/juice	4	1 (25.0)	0	0	0
Grapefruit fruit/juice	10	0	0	0	0
Grape fruit/juice and raisins	19	0	1 (5.3)	1	0
Lemon fruit/juice	7	0	0	0	0
Nectarine fruit/juice	6	0	0	0	0
Orange fruit/juice	12	0	0	0	0
Papaya fruit/juice	4	0	0	0	0
Peach fruit/juice	9	0	0	0	0
Pear fruit/juice	11	0	0	0	0
Pineapple fruit/juice	2	1 (50.0)	0	0	0
Plum fruit/juice and prunes	10	1 (10.0)	0	0	0
Raspberry fruit/juice	2	1 (50.0)	0	0	0
Strawberry fruit/juice	10	3 (30.0)	0	0	0
Watermelon fruit/juice	6	5 (83.3)	0	0	0
Other fruits/juices	25	10 (40.0)	2 (8.0)	0	2

<u>Vegetables - Totals</u>	355	137 (38.6)	23 (6.5)	4	22
Artichoke	10	3 (30.0)	0	0	0
Asparagus	7	6 (85.7)	0	0	0
Bok choy and Chinese cabbage	8	2 (25.0)	1 (12.5)	1	0
Broccoli	8	4 (50.0)	1 (12.5)	0	1
Cabbage	11	8 (72.7)	0	0	0
Carrots	12	2 (16.7)	3 (25.0)	0	3
Cauliflower	8	7 (87.5)	0	0	0
Celery	8	1 (12.5)	0	0	0
Cilantro	4	0	0	0	0
Collard greens	7	0	0	0	0
Corn	15	13 (86.7)	0	0	0
Cucumbers	13	2 (15.4)	0	0	0
Eggplant	5	1 (20.0)	0	0	0
Endive	3	1 (33.3)	1 (33.3)	0	1
Kale	6	0	0	0	0
Lettuce, head	12	5 (41.7)	0	0	0
Lettuce, leaf	14	3 (21.4)	0	0	0
Mushrooms and truffles	6	2 (33.3)	0	0	0
Okra	11	3 (27.3)	1 (9.1)	0	1
Onions/leeks/scallions/shallots	14	11 (78.6)	0	0	0
Peas (green/snow/sugar/sweet)	14	4 (28.6)	3 (21.4)	0	3
Peppers, hot	8	4 (50.0)	0	0	0
Peppers, sweet	9	4 (44.4)	2 (22.2)	0	2
Potatoes	8	2 (25.0)	0	0	0
Radishes	12	8 (66.7)	0	0	0
Red beets	6	1 (16.7)	4 (66.7)	1	4
Spinach	9	0	0	0	0
Squash	8	2 (25.0)	0	0	0
String beans (green/snap/pole/long)	13	5 (38.5)	1 (7.7)	1	1
Sweet potatoes	8	2 (25.0)	0	0	0
Swiss chard	6	1 (16.7)	2 (33.3)	0	2
Tomatoes	11	5 (45.5)	1 (9.1)	1	1
Other bean and pea products	36	17 (47.2)	1 (2.8)	0	1
Other leaf and stem vegetables	14	1 (7.1)	2 (14.3)	0	2
Other root and tuber vegetables	6	6 (100)	0	0	0
Other vegetables/vegetable products	5	1 (20.0)	0	0	0
Other Food Products - Totals	75	52 (69.3)	2 (2.7)	0	2
Animal products/byproducts	15	14 (93.3)	0	0	0
Honey and honey products	15	13 (86.7)	1 (6.7)	0	1
Edible seeds and seed products	4	3 (75.0)	0	0	0

Nuts, Almonds	9	2 (22.2)	0	0	0
Nuts, Peanuts	6	3 (50.0)	1 (16.7)	0	1
Nuts, Pecans	9	8 (88.9)	0	0	0
Nuts, Pistachios	8	1 (12.5)	0	0	0
Other nuts and nut products	5	4 (80.0)	0	0	0
Vegetable oil	4	4 (100)	0	0	0

[†]Percentage of the number of samples analyzed per commodity group *Total number of violative samples may not equal sum of samples with over-tolerance and no-tolerance violations because one sample can contain pesticide chemical residues of both violation types.

Appendix C. Analysis of Import Human Foods by Commodity Group in FY 2022

Commodity Group	Samples Analyzed (N)	Without Residues N (%) [†]	Violative Samples* N (%) [†]	Over Tolerance Violations (N)	No Tolerance Violations (N)
Totals - All Import Samples	2,069	922 (44.6)	217 (10.5)	52	188
Grains/Grain Products - Totals	88	51 (58.0)	11 (12.5)	4	8
Bakery products, doughs, crackers	1	0	0	0	0
Barley and barley products	3	3 (100)	0	0	0
Breakfast cereals	4	2 (50.0)	1 (25.0)	0	1
Corn and corn products	3	3 (100)	0	0	0
Macaroni and noodles	2	2 (100)	0	0	0
Oats and oat products	2	1 (50.0)	0	0	0
Rice and rice products	59	29 (49.2)	8 (13.6)	2	6
Soybeans and soybean products	1	1 (100)	0	0	0
Wheat and wheat products	6	4 (66.7)	1 (16.7)	1	0
Other grains and grain products	7	6 (85.7)	1 (14.3)	1	1
Fish/Shellfish/Aquatic Products - Totals	75	64 (85.3)	2 (2.7)	0	2
Aquaculture seafood	57	48 (84.2)	2 (3.5)	0	2
Fish and fish products	13	11 (84.6)	0	0	0
Shellfish and crustaceans	4	4 (100)	0	0	0
Other aquatic animals and products	1	1 (100)	0	0	0
Fruits - Totals	604	216 (35.8)	45 (7.5)	11	39
Apple fruit/juice	17	5 (29.4)	0	0	0
Apricot fruit/juice	17	6 (35.3)	0	0	0
Avocado fruit/juice	24	11 (45.8)	0	0	0
Bananas, plantains	14	8 (57.1)	0	0	0
Blackberry fruit/juice	29	8 (27.6)	5 (17.2)	3	2
Blueberry fruit/juice	34	7 (20.6)	0	0	0
Breadfruit, jackfruit	1	0	0	0	0
Cantaloupe	7	1 (14.3)	0	0	0
Cherry fruit/juice	11	1 (9.1)	2 (18.2)	0	2
Clementine fruit/juice	7	0	0	0	0
Cranberry fruit/juice	11	6 (54.5)	0	0	0
Currant fruit/juice	1	1 (100)	0	0	0
Date fruit/juice	20	18 (90.0)	2 (10.0)	0	2
Dragon fruit/juice	2	1 (50.0)	1 (50.0)	0	1
Fig fruit/juice	6	3 (50.0)	2 (33.3)	0	2
Grapefruit fruit/juice	7	1 (14.3)	0	0	0
Grapes fruit/juice and raisins	50	8 (16.0)	7 (14.0)	4	5
Honeydew melon	16	3 (18.8)	0	0	0

Kiwi fruit/juice	4	0	0	0	0
Lemon fruit/juice	26	8 (30.8)	0	0	0
Lime fruit/juice	33	11 (33.3)	5 (15.2)	1	5
Mango fruit/juice	42	37 (88.1)	1 (2.4)	0	1
Nectarine fruit/juice	4	0	0	0	0
Olives	12	9 (75.0)	2 (16.7)	1	2
Orange fruit/juice	15	5 (33.3)	0	0	0
Papaya fruit/juice	29	3 (10.3)	0	0	0
Peach fruit/juice	11	2 (18.2)	1 (9.1)	0	1
Pear fruit/juice	8	1 (12.5)	0	0	0
Pineapple fruit/juice	19	13 (68.4)	0	0	0
Plum fruit/juice and prunes	19	6 (50.0)	1 (8.3)	0	1
		` ′	0	0	
Pomegranate fruit/juice	5	0	Ť		0
Prickly pear fruit/juice Raspberry fruit/juice		1 (20.0)	3 (60.0)	0	3 2
1 0	18	6 (33.3)	2 (11.1)	0	
Strawberry fruit/juice	46	7 (15.2)	5 (10.9)	1	5
Watermelon fruit/juice	3	2 (66.7)	0	0	0
Other berry fruit/juice	11	6 (54.5)	2 (18.2)	0	2
Other citrus fruit/juice	7	2 (28.6)	2 (28.6)	1	1
Other melons/vine fruit/juice	1	0	0	0	0
Other sub-tropical fruit/juice	6	4 (66.7)	0	0	0
Other fruits/juices	11	4 (36.4)	2 (18.2)	0	2
Fruit jams, jellies, preserves, syrups, toppings	3	1 (33.3)	0	0	0
<u>Vegetables - Totals</u>	1165	498 (42.7)	147 (12.6)	36	128
Artichoke	4	4 (100)	0	0	0
Asparagus	51	37 (72.5)	2 (3.9)	0	2
Bamboo shoots	2	2 (100)	0	0	0
Bok choy and Chinese cabbage	14	5 (35.7)	3 (21.4)	1	3
Broccoli	16	9 (56.2)	0	0	0
Brussels sprouts	24	2 (8.3)	0	0	0
Cabbage	21	11 (52.4)	0	0	0
Carrots	48	22 (45.8)	9 (18.8)	0	9
Cauliflower	16	14 (87.5)	0	0	0
Celery	27	8 (29.6)	8 (29.6)	3	6
Choyote	6	4 (66.7)	0	0	0
Cilantro	35	0	20 (57.1)	6	19
Collard greens	3	2 (66.7)	1 (33.3)	1	0
Corn	20	20 (100)	0	0	0
Cucumbers	44	4 (9.1)	2 (4.5)	0	2
Eggplant	12	3 (25.0)	1 (8.3)	0	1
Endive	i .	1	Ī	Ī	Ī

Garbanzo beans	14	9 (64.3)	0	0	0
Garlic	12	12 (100)	0	0	0
Ginger	20	13 (65.0)	3 (15.0)	0	3
Kale	11	3 (27.3)	1 (9.1)	0	1
Kidney beans	6	5 (83.3)	0	0	0
Lettuce, head	17	5 (29.4)	0	0	0
Lettuce, leaf	16	4 (25.0)	3 (18.8)	2	3
Mung beans	23	11 (47.8)	3 (13.0)	2	1
Mushrooms/truffles/fungi	77	57 (74.0)	14 (18.2)	4	13
Mustard greens	4	1 (25.0)	1 (25.0)	0	1
Okra	18	10 (55.6)	0	0	0
Onions/leeks/scallions/shallots	74	35 (47.3)	10 (13.5)	3	9
		· · ·	` ´	2	10
Peas (green/snow/sugar/sweet)	51	18 (35.3)	12 (23.5)		
Peppers, hot	75	8 (10.7)	21 (28.0)	1	20
Peppers, sweet	44	5 (11.4)	ŭ	0	0
Potatoes	22	2 (9.1)	1 (4.5)	0	1
Pumpkins	2	1 (50.0)	0	0	0
Radishes	25	10 (40.0)	5 (20.0)	0	5
Red beets	16	10 (62.5)	2 (12.5)	2	0
Soybeans	13	8 (61.5)	1 (7.7)	1	0
Spinach	15	0	3 (20.0)	0	3
Squash	33	6 (18.2)	0	0	0
String beans (green/snap/pole/long)	23	5 (21.7)	2 (8.7)	1	2
Sweet potatoes	17	16 (94.1)	1 (5.9)	0	1
Taro/dasheen	14	12 (85.7)	0	0	0
Tomatoes/tomatillos	63	16 (25.4)	2 (3.2)	0	2
Vegetables, other, or mixed	22	16 (72.7)	1 (4.5)	1	0
Other bean/pea vegetables/products	55	33 (60.0)	10 (18.2)	3	8
Other leaf and stem vegetables	26	16 (61.5)	3 (11.5)	2	2
Other root and tuber vegetables	13	4 (30.8)	2 (15.4)	1	1
Other Food Products - Totals	137	93 (67.9)	12 (8.8)	1	11
Coconut and coconut products	3	3 (100)	0	0	0
Dietary supplements	7	6 (85.7)	0	0	0
Honey and honey products	4	4 (100)	0	0	0
Multi-ingredient foods	1	0	0	0	0
Nuts, Almonds	5	2 (40.0)	0	0	0
Nuts, Cashews	5	4 (80.0)	0	0	0
Nuts, Peanuts	5	3 (60.0)	1 (20.0)	0	1
Nuts, Pecans	5	5 (100)	0	0	0
Nuts, Pistachios	3	3 (100)	0	0	0
Other nuts and nut products	10	8 (80.0)	0	0	0

Oil, olive	16	11 (68.8)	3 (18.8)	1	2
Oil, vegetable	6	4 (66.7)	0	0	0
Seeds, edible and seed products	59	36 (61.0)	7 (11.9)	0	7
Spices	7	4 (57.1)	0	0	0
Other food products	1	0	1 (100)	0	1

[†]Percentage of the number of samples analyzed per commodity group.
*Total number of violative samples may not equal sum of samples with over-tolerance and no-tolerance violations because one sample can contain pesticide chemical residues of both violation types.