Individuals using assistive technology may not be able to fully access the information contained in this file. For assistance, please call 800-835-4709 or 240-402-8010, extension 1. CBER Consumer Affairs Branch or send an e-mail to: occd@fda.hhs.gov and include 508 Accommodation and the title of the document in the subject line of your e-mail.

Pertussis Epidemiology in the Acellular Vaccine Era

Susan Hariri, PhD

Division of Bacterial Diseases

National Center for Immunization and Respiratory Diseases

Vaccines and Related Biological Products Advisory Committee September 20, 2024

Outline

- Pertussis overview
- Types of pertussis vaccines
- Pertussis in the United States
 - Vaccine recommendations and vaccination coverage
 - Disease burden and epidemiologic trends up to the COVID-19 pandemic
 - Transition from whole cell to acellular vaccines in context of disease resurgence
 - Waning immunity from acellular vaccines
 - Epidemiologic trends post-pandemic

Pertussis (whooping cough)

- Acute respiratory infection caused by *Bordetella pertussis*
- Highly contagious
 - Transmitted via respiratory droplets
 - Humans are the only natural reservoir
- Symptoms can affect all ages
 - Range from prolonged cough illness to mild and asymptomatic infection
 - Severity of symptoms differs by age and vaccination status
 - Infants at highest risk of morbidity and mortality
- Transmission dynamics not well understood
 - Asymptomatic infection thought to play a role

Pertussis Epidemiology

- Poorly controlled despite high vaccination coverage
- Endemic disease
- Cyclical pattern with peaks every 3-5 years
- True population burden underestimated
 - Under-diagnosed
 - Early symptoms non-specific, mimic other respiratory infections
 - Diagnostic tests not as reliable later in infection
 - Under-reported
 - Milder cases may not meet case definition for reporting

Pertussis Vaccines

- Whole cell vaccines (1940s)
 - Safe and effective but reactogenic
 - Injection site reactions, fever, febrile seizures
 - Increased public concern and declines in vaccination
 - Led to global effort to develop vaccines with less adverse effects
- Acellular vaccines (1990s)
 - Recombinant vaccines containing 1-5 pertussis antigens
 - Safe, less reactogenic
 - High efficacy similar to whole cell vaccines
 - Replaced whole cell vaccines in most developed countries
 - Two formulations licensed in the U.S. (pediatric DTaP and adolescent/adult Tdap)
 - Combined with tetanus and diphtheria toxoids

United States Pertussis Vaccination Schedule

DTaP	Tdap	Tdap	Tdap
for young children	for preteens	for pregnant women	for adults
2, 4, and 6 months 15 through 18 months 4 through 6 years	✓ 11 through 12 years	✓ During the 27-36th week of each pregnancy	✓ Anytime for those who have never received it

DTaP: diphtheria, tetanus, and acellular pertussis; Tdap: tetanus, diphtheria, acellular pertussis

Childhood and Adolescent Pertussis Vaccination Coverage, United States, 2004-2022

Maternal Tdap Coverage, United States, 2014-2023

Historical trends in reported pertussis cases, United States

Reported Pertussis Cases, United States, 1922-2019

Possible Reasons for Pertussis Resurgence

- Improved, more sensitive diagnostic tests
- Strain adaptation to vaccine pressure
- Increased awareness and testing

Possible Reasons for Pertussis Resurgence

- Improved, more sensitive diagnostic tests
- Strain adaptation to vaccine pressure
- Increased awareness and testing
- Flawed acellular vaccines
 - Less protection against transmission
 - Faster waning of immunity

Age-related shifts during epidemic peak years in the United States

Reported Pertussis Cases by Age, United States 2004 (N=25,827)

CDC, National Notifiable Diseases Surveillance System

Reported Pertussis Cases by Age, United States 2010 (N=27,550)

Acellular only

Whole-cell only

Mix of whole-cell and acellular

Reported Pertussis Cases by Age, United States 2012 (N=48,277)

Acellular only

Mix of whole-cell and acellular

Reported Pertussis Cases by Age, United States 2014 (N=32,971)

Acellular only

Mix of whole-cell and acellular

Vaccine effectiveness studies evaluate duration of protection

DTaP Vaccine Effectiveness (VE)– California, 2010

	Case (n)	Control (n)	VE, %	95% CI
Overall VE, all ages (4-10 years)				
0 dose	53	19	Ref	
5 doses	629	1,997	88.7	79.4 – 93.8

DTaP Vaccine Effectiveness (VE)– California, 2010

	Case (n)	Control (n)	VE, %	95% CI
Overall VE, all ages (4-10 years)				
0 dose	53	19	Ref	
5 doses	629	1,997	88.7	79.4 - 93.8
Time since 5 th dose				
0 doses	53	19	Ref	
< 12 months	19	354	98.1	96.1 - 99.1
12 – 23 months	51	391	95.3	91.2 - 97.5
24 – 35 months	79	366	92.3	86.6 - 95.5
36 – 47 months	108	304	87.3	76.2 – 93.2
48 – 59 months	141	294	82.8	68.7 – 90.6
60+ months	231	288	71.2	45.8 - 84.8

DTaP Duration of Protection

<u>Tdap</u> VE– Washington, 2012

	Case (n)	Control (n)	VE, %	95% CI
Overall VE, all ages				
No Tdap dose	109	154	Ref	
Tdap dose	342	1092	63.9	49.7 - 74.1

<u>Tdap</u> VE– Washington, 2012

	Case (n)	Control (n)	VE, %	95% CI		
Overall VE, all ages						
No Tdap dose	109	154	Ref			
Tdap dose	342	1092	63.9	49.7 - 74.1		
Time since Tdap						
No Tdap dose	109	154	Ref			
< 1 year	69	332	73.1	60.3-81.8		
1 - < 2 years	124	389	54.9	32.4-70.0		
2 - < 4 years	148	371	34.2	-0.03-58.0		

Tdap Duration of Protection

Time since Tdap	Koepke, 2014	Acosta, 2015	Klein, 2016	Breakwell, 2016	Briere, 2018		
	Vaccine effectiveness (%)						
<1 year	75	73	68	76	62		
1- <2 years	68	54	56	63	02		
2- <4	34	32	25	56	21		

Post-pandemic pertussis epidemiology

Reported Pertussis Cases, United States, 2018-2020

Reported Pertussis Cases, United States, 2018-2022

CDC, National Notifiable Diseases Surveillance System

Reported Pertussis Cases, United States, 2018-2023*

*2023 and 2024 data are provisional

CDC, National Notifiable Diseases Surveillance System, Updated September 6th 2024

Reported Pertussis Cases, United States, January 2018-July 2024^{*}

*2023 and 2024 data are provisional

SOURCE: CDC, National Notifiable Diseases Surveillance System, Updated September 6th 2024

Post-pandemic Rebound in Other Countries

Figure 3. Laboratory confirmed cases of pertussis by quarter in England: 2011 to June 2024 (note 1)

Increase of pertussis cases in the EU/EEA (europa.eu) Confirmed cases of pertussis in England by month - GOV.UK (www.gov.uk) Presentation at 14th International Bordetella Symposium

Reported Pertussis Cases by Year, Quarter, and Age, 2018–Q2 2024^{*}

CDC, National Notifiable Diseases Surveillance System, Updated September 6th 2024

Outbreaks Reported Across the Country

Whooping cough cases on the rise, nearly 3 times as high as last year: CDC

There have been at least 4,864 whooping cough cases reported this year so far.

0

At least 4.864 cases have been reported so far this year. which is much higher than the 1,746 cases reported at the

Summary

- Pertussis morbidity and mortality significantly lower than pre-vaccine era but remains significant public health burden
- Pertussis resurgence associated with introduction of acellular vaccines
 - Waning immunity from current vaccines well documented
- Need for improved vaccines with longer duration of protection
 - Development impeded by longstanding knowledge gaps and lack of accepted correlate of protection
 - No clear pathway to licensure
 - Infant vaccine efficacy studies with unvaccinated controls unethical
 - Booster vaccine efficacy studies long, expensive, and won't address duration of protection

Thank you

Susan Hariri, PhD Division of Bacterial Diseases National Center for Immunization and Respiratory Diseases <u>SHariri@cdc.gov</u>

For more information, contact CDC 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 <u>cdc.gov</u> Follow us on X (Twitter) @CDCgov & @CDCEnvironment

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the U. S. Centers for Disease Control and Prevention.

38