

KEYTRUDA in First-Line Esophageal Cancer

M. Catherine Pietanza, MD

Vice President, Clinical Research

Global Clinical Development, Late-Stage Oncology

Merck Sharp & Dohme LLC

What You Will Hear

Overview of Pembrolizumab and PD-L1 22C3 PharmDx

M. Catherine Pietanza, MD

Vice President, Clinical Research Global Clinical Development, Late-Stage Oncology Merck Sharp & Dohme LLC

KEYNOTE-590 Results in Esophageal Cancer

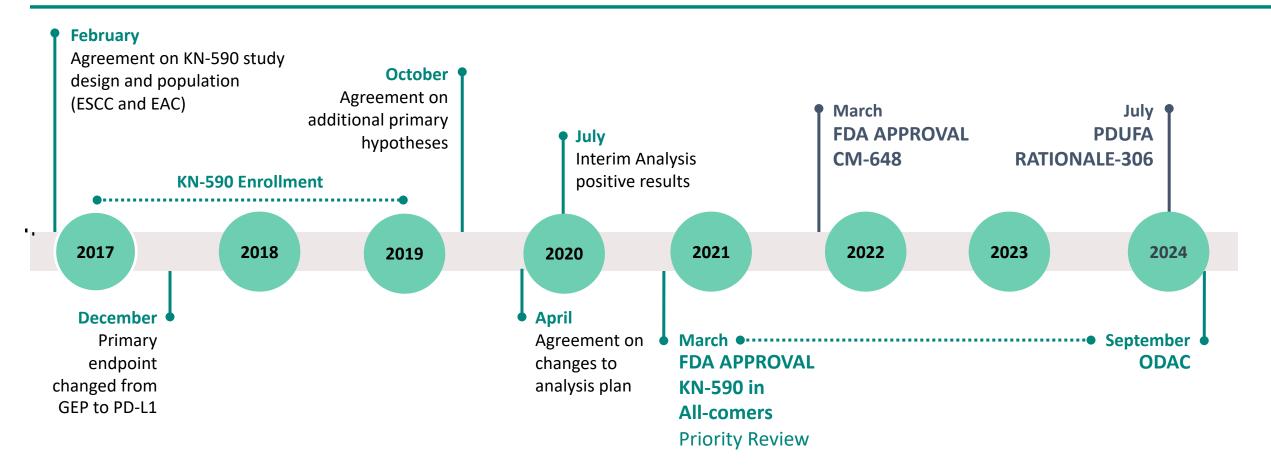
Pooja Bhagia, MD

Executive Director Global Clinical Development, Late-Stage Oncology Merck Sharp & Dohme LLC

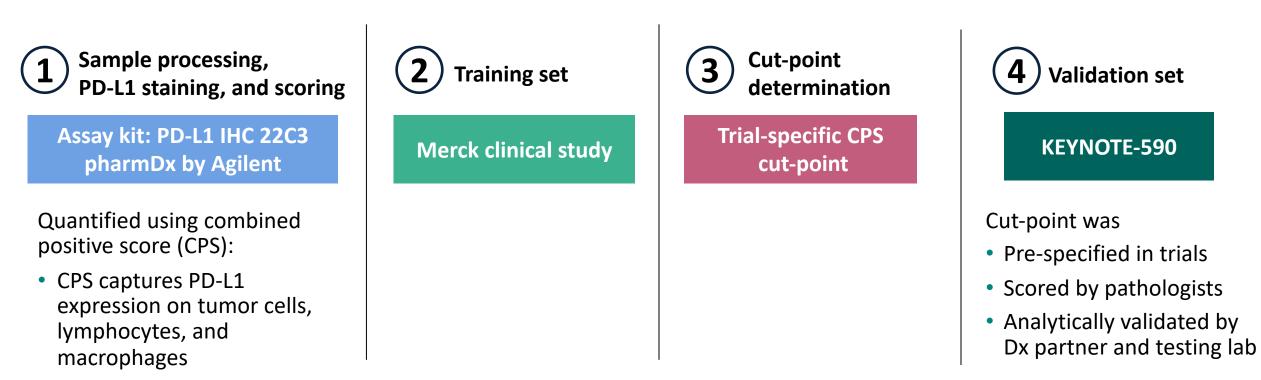
Clinical Management of Esophageal Cancer

Peter Enzinger, MD Gastrointestinal Oncologist Dana-Farber Cancer Institute

KEYTRUDA Helps Address an Unmet Need in Esophageal Cancer


- Metastatic esophageal cancer is a rare disease, and patients have a poor prognosis
- Current SOC of chemotherapy + IO in 1L esophageal cancer addresses a significant unmet need

KEYNOTE-590


Current indication for pembrolizumab should be retained

Development and Regulatory History for KEYNOTE-590

KN-590 is the first approval with IO in first-line treatment of metastatic esophageal cancer in the US

Robust Sample Processing, Cut-point Determination, Scoring, and Validation in Merck Randomized Trials

• CPS scores range: 0 to 100

Robust PD-L1 data support all-comers indication for KEYNOTE-590

Rigorous Statistical Approaches in Phase 3 Trials and Limitations of Post hoc Subgroup and Pooled Analyses

- Statistically rigorous and accepted methodology for Phase 3 studies:
 - Strong type 1 error control and adequate sample size required to prospectively test a hypothesis
 - Subgroup analysis is considered exploratory to assess directional consistency of treatment effect
- Post hoc subgroup analysis at various cut-points not rigorously assessed or pre-specified may lead to spurious finding of randomly high or low treatment effect estimates
- Pooled analysis to inform product labeling has inherent limitations and does not replace well controlled individual studies
 - Assumes identical:
 - Efficacy for all ICIs
 - Patient population within the selected subgroup, despite trial, assay and cut-point differences

Key Considerations When Evaluating Benefit-Risk of Pembrolizumab in Esophageal Cancer Based on PD-L1 status

- KN-590 is a large Phase 3 study conducted with rigorous statistical design
 - No new data with pembrolizumab that changes benefit-risk
- The PD-L1 IHC 22C3 pharmDx assay is specifically studied for pembrolizumab in the approved indication
- There are key differences in considering a restriction of this indication by PD-L1 cut-point compared to those for cetuximab/panitumumab and olaparib

The practice of medicine is informed by clinical guidelines and individual benefit-risk assessment

KEYNOTE-590 Results in Esophageal Cancer

Pooja Bhagia, MD

Executive Director

Global Clinical Development, Late-Stage Oncology

Merck Sharp & Dohme LLC

1L Esophageal Cancer (KEYNOTE-590)

Keytruda, for the treatment of patients with locally advanced or metastatic esophageal or gastroesophageal junction (GEJ) (tumors with epicenter 1 to 5 centimeters above the GEJ) carcinoma that is not amenable to surgical resection or definitive chemoradiation in combination with platinum- and fluoropyrimidine-based chemotherapy.

Phase 3, 1L Esophageal Cancer Study KN-590

EAC=esophageal adenocarcinoma; ECOG PS=Eastern Cooperative Oncology Group performance status; EGJ=esophagogastric junction, ESCC=esophageal squamous cell carcinoma.

Key Study Design Elements Based on PD-L1 Expression KN-590

Central PD-L1 Testing

Initial Study Design

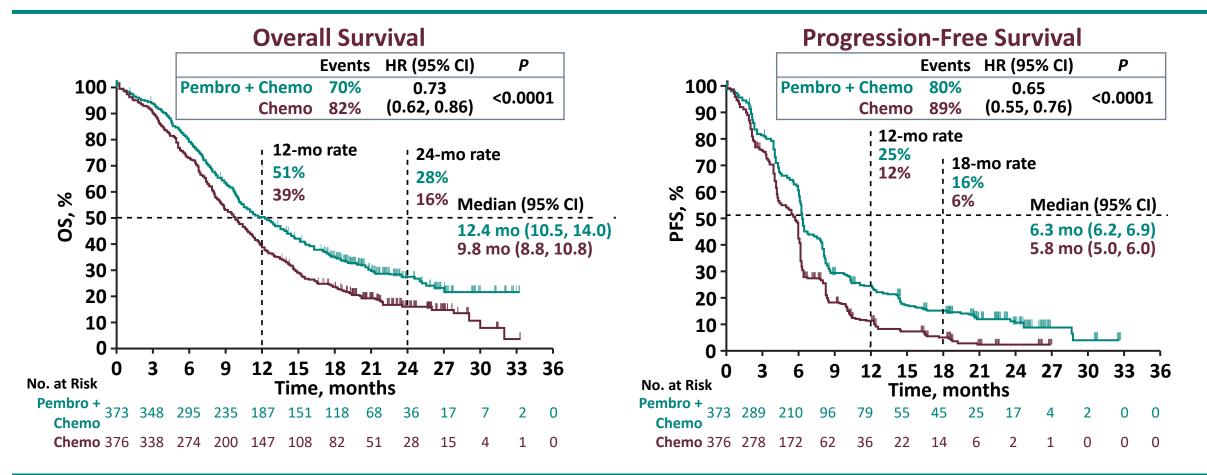
Early pembrolizumab monotherapy study indicated antitumor response

 Agilent PD-L1 IHC 22C3 pharmDx assay validated at CPS≥10 Hypothesis testing in ITT and GEP biomarker-positive

Protocol Amendment After KN-180 Readout

CE-11

 Added hypothesis testing in CPS≥10


~51% of ITT was CPS≥10

Baseline Characteristics Were Balanced KN-590: ITT

Characteristic	Pembro + Chemo (n=373)	Chemo (n=376)
Median age, years (range)	64.0 (28-94)	62.0 (27-89)
≥65 years	46%	40%
Male	82%	85%
Asia region	53%	52%
ECOG PS 1	60%	60%
Metastatic disease	92%	90%
Squamous cell carcinoma	74%	73%
Adenocarcinoma	27%	27%
PD-L1 CPS≥1 ^{a,b}	86%	87%
PD-L1 CPS≥10 ^b	50%	52%

^aPD-L1 CPS≥1 subgroup was analyzed post hoc; ^bPD-L1 status was not evaluable or missing in 12 patients in the pembro + chemo group and 7 patients in the chemo group. Cutoff date: 02JUL2020.

Statistically Significant and Clinically Meaningful OS and PFS Improvements KN-590: ITT

Safety profile of investigational arm is consistent with the individually established safety profiles of each agent

HR and p value are from protocol pre-specified stratified analysis. Cutoff Date: 02JUL2020, Interim Analysis.

OS and PFS Are Directionally Consistent at All PD-L1 Cut-points KN-590: ITT

Overall Survival				Progression-Free Survival			
CPS Subgroup	N/Events		HR (95% CI) ^a	CPS Subgroup	N/Events		HR (95% CI) ^a
ITT	749/571	H H H	0.73 (0.61, 0.86)	ІТТ	749/630	H H H	0.65 (0.56, 0.76)
<1	83/67	· · · · · ·	0.96 (0.59, 1.55)	<1	83/73		0.88 (0.55, 1.39)
≥1	647/493	 -	0.70 (0.59, 0.84)	≥1	647/543	H	0.63 (0.53, 0.74)
<5	231/182	⊢ ∎∔	0.83 (0.62, 1.11)	<5	231/202	⊷ ●↓	0.86 (0.65, 1.13)
≥5	499/378	 -	0.68 (0.55, 0.83)	≥5	499/414	 -	0.57 (0.47, 0.70)
≥1 to <5	148/115		0.78 (0.54, 1.12)	≥1 to <5	148/129		0.83 (0.59, 1.18)
≥5 to <10	116/89		0.91 (0.59, 1.38)	≥5 to <10	116/100	—	0.68 (0.45, 1.02)
≥1 to <10	264/204		0.84 (0.63, 1.10)	≥1 to <10	264/229	⊷	0.77 (0.59, 1.00)
≥10	383/289	 -	0.62 (0.49, 0.79)	≥10	383/314		0.54 (0.43, 0.68)
	0.125 0.25	0.5 1	2		0.125 0.2	25 0.5 1	2
Favors Pembrolizumab Favors SOC					Favors Pen	nbrolizumab Fa	avors SOC
Safety profile of pembrolizumab and chemotherapy is generally similar across PD-L1 CPS subgroups							

a. Based on unstratified analysis. Database cutoff date: 02JUL2020.

Statistically Significant and Clinically Meaningful OS and PFS Improvement KN-590: ESCC

Overall Survival

Progression-Free Survival

CE-15

OS and PFS Across PD-L1 CPS Subgroups in ESCC KN-590: ESCC

Overall Survival			CPS	Progression	-Free Surviv	al		
CPS Subgroup	N/Events		HR (95% CI) ^a	Subgroup	N/Events		HR (95% CI) ^a	
ІТТ	548/412	⊷ • 0).72 (0.59, 0.87)	ІТТ	548/463	H	0.66 (0.55, 0.79)	
<1	55/41	· · · · · 1	. .00 (0.54, 1.85)	<1	55/47		- 0.96 (0.54, 1.72)	
≥1	478/364	⊷ • 0).69 (0.56, 0.85)	≥1	478/406	 -	0.63 (0.52, 0.77)	
≥1 to <5	113/91).82 (0.54, 1.24)	≥1 to <5	113/100		0.82 (0.55, 1.22)	
≥5 to <10	79/58	· 1	. 03 (0.61, 1.75)	≥5 to <10	79/70		0.66 (0.40, 1.10)	
≥1 to <10	192/149	→ 0).94 (0.68, 1.29)	≥1 to <10	192/170		0.79 (0.58, 1.07)	
≥10	286/215	⊷ • 0).57 (0.44, 0.75)	≥10	286/236		0.54 (0.42, 0.70)	
	0.125 0.25	0.5 1 2			0.125 0.25	0.5 1	2	
Favors Pembrolizumab Favors SOC					Favors Pembrolizumab Favors SOC			

CE-16

^aBased on unstratified analysis. Cutoff Date: 02JUL2020, Interim Analysis

Pembrolizumab in Combination With Chemotherapy Addresses a Significant Unmet Need

CF-17

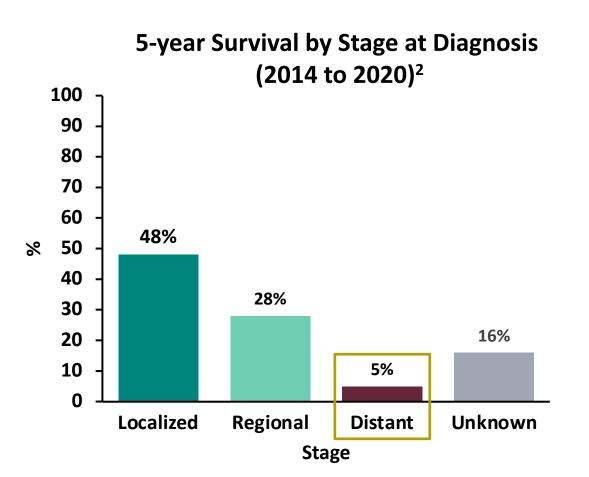
- Statistically significant and clinically meaningful efficacy was demonstrated in the ITT population
 - Magnitude of benefit increases with higher levels of PD-L1 expression, with clear benefit seen in the CPS ≥1 subgroup
 - Efficacy trends in the CPS <1 subgroup of ITT favored the combination
- Health-related QoL remained stable during treatment, was generally similar between arms, and generally consistent across PD-L1 CPS subgroups
- Safety profile of the combination was manageable and similar across PD-L1 CPS subgroups
- The label for this indication delineates efficacy by PD-L1 expression level and supports a benefit-risk discussion between physicians and patients

Clinical Management of Esophageal Cancer

Peter Enzinger, MD

Gastrointestinal Oncologist

Dana-Farber Cancer Institute



In the past 2 years, Dr. Enzinger has been a consultant for:

Astellas Pharma BeiGene USA, Inc. Daiichi Sankyo Eisai, Inc Legend Biotech Merck Sharp & Dohme LLC Novartis Oncolys Regeneron Sanofi-Aventis U.S. LLC Servier Pharmaceuticals LLC

High Unmet Need Remains for US Patients With Metastatic Esophageal Cancer

- Strong need for new treatment options
 - Difficult-to-treat patient population
 - Only innovation in last 30 years is ICIs
 - Chemotherapy is the only other treatment option
 - ~40% of patents will receive 2L, underscoring the need for best treatment upfront¹
- Considerations for patients in need of 1L treatment
 - Therapeutic urgency and timing of biomarker testing
 - Adverse event profile
 - Long-term survival
 - PD-L1 expression level to assist with patient management decision

Challenges of PD-L1 Testing and Scoring in Real-World Clinical Practice

Technical Challenges

- Different assays and antibody clones may be used locally that are not FDA approved
- Staining variability

Sample quality¹

Interpretation

CE-21

Inconsistency in pathologist training and cut-point interpretation

Real-World PD-L1 Testing and Treatment in Esophageal Cancer

- Among patients with advanced/metastatic esophageal cancer treated in 1L:
 - 66% had evidence of PD-L1 expression testing¹
 - **41%** received ICI-based regimens¹

Many patients with advanced/ metastatic esophageal cancer do not receive ICI-based regimens in 1L, suggesting physicians and patients carefully weigh risks and benefits of available options If indication is restricted, many patients with advanced/ metastatic esophageal cancer who have limited treatment options will be excluded from potentially life-saving therapy

*Based on PD-L1 CPS prevalence in KN-590 (N = 730): CPS≥1, 89%; CPS≥10, 52%

Data source: SEER Cancer Stat Facts: Esophageal Cancer. National Cancer Institute. Bethesda, MD, https://seer.cancer.gov/statfacts/html/stomach.html.

1. Data from Flatiron Health electronic health record database after 3/22/2021 to 3/31/2024, data on file.

KEYNOTE-590 Patient With Esophageal Cancer

Female (Western) in 40s with esophageal cancer enrolled in **KEYNOTE-590**

- Histology-confirmed esophageal squamous cell carcinoma
- PD-L1 evaluation indicated CPS <1 as assessed by central lab
- Imaging confirmed stage IV disease with lung metastasis
- Achieved partial response at cycle 6 and complete response at cycle 15 with chemotherapy and pembrolizumab combination. DOR was ~50 months and patient was alive at 5-year follow-up

Clinical Perspective Conclusions

For patients with unresectable or metastatic esophageal cancer:

- Treatment options have been limited and consisted of platinum, fluoropyrimidine, and taxane chemotherapy
- The approval of checkpoint inhibitors has revolutionized care of these patients and has improved survival and maintained health-related quality of life
- The choice to add a checkpoint inhibitor must be individualized and depends on many factors
- Variability in real-world PD-L1 biomarker testing may complicate treatment decisions
- The scientific community further informs decision making through clinical guidelines

The all-comers indication allows patients to have immunotherapy as a first-line treatment option at the discretion of the patient and their treating physician

Concluding Remarks

M. Catherine Pietanza, MD

Vice President, Clinical Research

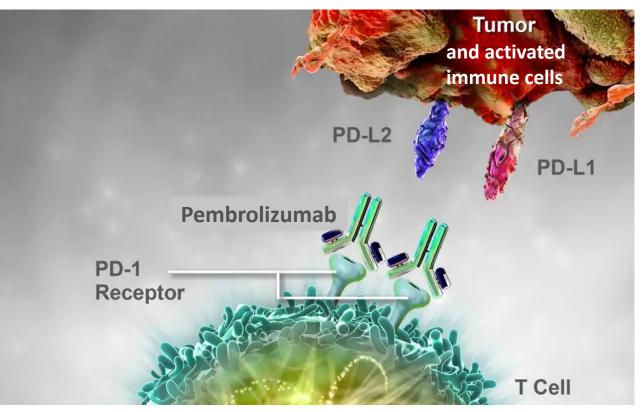
Global Clinical Development, Late-Stage Oncology

Merck Sharp & Dohme LLC

CE-25

Summary

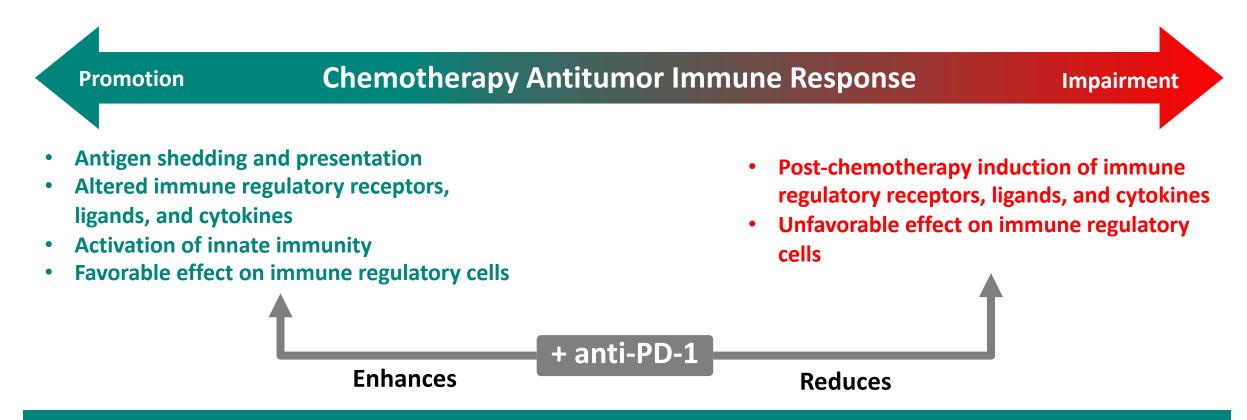
KEYNOTE-590 was rigorously designed, executed, and success criteria for all endpoints were met


- Current approved indication in the US reflects a positive benefit-risk assessment
- OS and PFS hazard ratios for all PD-L1 subgroups in ITT population are <1

First-line metastatic esophageal cancer remains an unmet need with poor prognosis

 Pembrolizumab labeling is informative and helps guide the physician/patient decision-making process

Pembrolizumab Mechanism of Action Centers Around Tumor-Specific Expression of PD-L1



PD-1=programmed death receptor-1; PD-L1=programmed death ligand 1; PD-L2=programmed death ligand 2.

- Pembrolizumab restores immune response by binding PD-1 and blocking its interaction with PD-L1 and PD-L2
- Increased expression of PD-L1 enriches for response with pembrolizumab monotherapy

PD-L1 expression is tumor type specific and interpretation is dependent on the assay and scoring method used

Biological Evidence That Combining Pembrolizumab With Chemotherapy Modulates Antitumor Response

Potential complementary effects between chemotherapy and pembrolizumab could benefit patients across a broad range of PD-L1 expression

Bracci L et al. *Cell Death Differ* 2014;21:15-25. Roselli M et al. *Oncoimmunology* 2013;2:e27025. Galluzzi L et al. *Cancer Cell* 2015;28:690-714. Medler TR et al. *Trends Cancer* 2015;1:66-75. van Meir H et al. *Oncoimmunology* 2017;6:e1267095. Peng J et al. *Cancer Res* 2015;75:5034-5045. Zhang P et al. *Cancer Sci* 2016;107:1563-1571. Novosiadly RD et al. 18th IASLC World Conference on Lung Cancer; Oct 15-18, 2017; abstract P3.07-006.