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FPs/mm2 1011 [770,1274] 70 [41-119] 

] 

  
 

   

  

 

 

500 500 500 

325 
400 400 400 

JOO 

300 300 300 275 

.. .. 250 

200 200 225 

200 
100 100 100 

175 

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 

- - - - - - - - - - - - :s - - - - - - - - - -
' 

325 325 J25 325 J25 

300 300 300 

275 275 275 275 275 

250 250 250 

22~ 225 22~ 225 225 

200 200 200 

175 !75 175 

200 250 300 200 250 300 200 250 300 200 250 300 

1.0 1.0 

------
0.8 0.8 

C: 0 
.2 0.6 ·s; 0.6 
V, ·-..., ·- ·-u V, 

,t 04 ~ 04 
li) 

0.2 0.2 

0&oo 0.25 o.50 o. 15 1.00 
0.0 O 500 1000 1500 

Recall FPs/mm 2 

1.0 ~ ---------~ 1.0 

0.8 0.8 
-----

C: 0 
.2 0.6 ·s; 0.6 
V, ·-..., 
·- ·-u V, 
(lJ ~ 04 c\: 0.4 

li) 

0.2 0.2 

0&oo 
I 0.0 

0.25 0.50 0. 75 1.00 0 25 50 75 100 125 
Recall FPs/mm 2 

1.0 ,--

0,8 0.8 

C: 0 
.2 0.6 ·s; 0.6 
V, ·-..., ·- ·-u V, 
(lJ ~ 04 c\: 0 4 

li) 

0.2 0.2 

0&oo 0.25 o.5o o.75 1.00 0.0 O 50 100 150 
Recall FPs/mm 2 

:. I ,, . , "" 
>>'si,"'"' 

Precision 0.55 [0.46-0.63] 0.64 [0.53-0.75] 
FPs/mm2 1032 [756-1328] 30 [13-57] 60 [39-82] 

YOLO10X 
Recall 0.70 [0.58-0.80] 0.45 [0.31-0.58] 0.43 [0.28-0.63] 

Precision 0.55 [0.46-0.63] 0.63 [0.5-0.75] 0.68 [0.61-0.74] 

• Tumor-infiltrating lymphocytes (TILs) are promising prognostic
biomarkers for HER2+ and triple-negative breast cancer patients. 

• Automated TILs detection using deep learning models holds 
clinical potential, but standardized assessment methods are 
lacking. 

• In this study, we developed and evaluated two TILs detection
models (a YOLOv10 and an EfficientNetB0-U-Net) 

Data & Methods Abstract 
Development and Testing Data Split Strategy 
TiGER data are from three sources: 
TCGA: 151 Slides, Cell level annotations derived from BCSS and NuCLS datasets. 
JB: 26 Slides, Cell level annotations made by a panel of board-certified breast pathologists. 
TC: 18 Slidess Cell level annotations made by a panel of board-certified breast pathologists. 
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• We found in this study that multiple metrics ranked the
1. https://tiger.grand-challenge.org/ models consistently – the U-Net model outperformed the 
2. Arab A. et al. Assessment of machine learning algorithms for TILs scoring using YOLO models in this task using the TiGER datasets. 
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• Binary metrics at one operating point can be ambiguous 
and performance curves (e.g., precision-recall curve or

bagging ensemble method (majority voting) to combine predicti
five models rained usi ff folds. 
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