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* We used a bagging ensemble method (majority voting) to combine
the five finetuned models’ outputs. Model Training and Tuning

* Using these finetuned models, we evaluated their performance on  « YOLO model: An end-to-end detection model leveraging the YOLOv10 architecture
the hold-out test data for the cell detection task. for efficient TIL cell detection (M: medium version, X; extra-large version).
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