Sotagliflozin to Improve Glycemic Control in Adults with Type 1 Diabetes (T1D) Mellitus and Chronic Kidney Disease (CKD)

October 31, 2024

Endocrinologic and Metabolic Drugs Advisory Committee Lexicon Pharmaceuticals, Inc.

Introduction: T1D-CKD Indication

Brian Corrigan

Senior VP Regulatory & Quality Assurance Lexicon Pharmaceuticals, Inc.

Insulin Therapy is a Necessary and Life-Saving Intervention for People with Type 1 Diabetes

- Despite advances in insulin treatments only ~20% of people achieve optimal glycemic control¹
- Poor glycemic control* increases morbidity and mortality risk²⁻⁵
- Mortality and morbidity risks in patients with T1D vs the overall population:
 - 10X greater risk cardiovascular disease²
 - 6X greater risk of ESKD⁵
 - 4X greater risk of HF hospitalization³
 - 2-5X greater risk of all-cause mortality⁴

^{*} Hypo- or hyperglycemia episodes outside the recommended blood glucose target range

^{1.} Pettus, 2019; 2. de Ferranti, 2014; 3. Rosengren, 2015; 4. Ruiz, 2022; 5. Rosolowsky, 2011

Sotagliflozin an Oral Dual Inhibitor of SGLT1 and SGLT2 Improves Glycemic Control

- Adjunct therapy for use with insulin
- SGLT1 inhibition in intestinal tract blunts and delays glucose absorption and reduces postprandial glucose excursions¹
- SGLT2 inhibition in kidney reduces glucose reabsorption and increases urinary glucose excretion, lowering blood glucose²

Sotagliflozin Development Program Includes Three Phase 3 Studies in Patients with T1D

T₁D

Study 309

Phase 3, randomized, double-blind, placebo-controlled

Sotagliflozin 200 mg and 400 mg

T1D (N = 793)

Study 310

Phase 3, randomized, double-blind, placebo-controlled

Sotagliflozin 200 mg and 400 mg

T1D (N = 782)

Study 312

Phase 3, randomized, double-blind, placebo-controlled

> Sotagliflozin 400 mg

T1D (N = 1,405)

- Statistically significant benefits
- Improved glycemic control
- Consistent benefit across subgroups

Sotagliflozin Re-Submission for T1D-CKD Subgroup Following CRL* for 2018 NDA in Adults with T1D

Evidence of Efficacy in Patients with T1D

- Statistically significant A1C reduction
- Effects across clinically relevant secondary endpoints

Safety Benefits and Concerns

- No increase in severe hypoglycemic events
- Increased occurrence of diabetic ketoacidosis (DKA)

Jan 2019	EMDAC Meeting	Voted 8-8 on benefit-risk of sotagliflozin in overall T1D Population				
Mar 2019	CRL Issued	Need for additional benefits that outweigh DKA risk				
Dec 2023	Type A Meeting	Identification of a subpopulation from Phase 3 program with improved benefits and/or diminished risk				
Mar 2024	Type A Meeting	T1D-CKD a reasonable subgroup for NDA resubmission				

CRL: Complete Response Letter

Since CRL, Sotagliflozin Demonstrated Cardiorenal Benefits in SCORED Study

T₂D

SCORED Study

Phase 3, randomized, double-blind, placebo-controlled

Patients with T2D, CKD, and other CV risk factors N = 10,584

Sotagliflozin 200 to 400 mg

INPEFA® Sotagliflozin Approval in 2023

To reduce risk of CV death, hospitalization for heart failure, and urgent heart failure visit in adults with heart failure, or T2D, chronic kidney disease, and other CV risk factors

CKD is independent predictor for increased morbidity and mortality

- Poor glycemic control associated with accelerated eGFR decline¹ and more rapid progression to ESKD²
- eGFR decline associated with increased risk of hospitalization for HF³
- Decreased time in range associated with elevation in risk for kidney complications⁴
- Increased risk of death⁵

Patients with T1D-CKD represent high-risk subset who would gain additional benefits from improved glycemic control

1. Shah, 2024; 2. Skupien, 2014; 3. Rosengren, 2015; 4. Beck, 2019; 5. Liao, 2023

Lexicon Defined T1D-CKD Subgroup with Greatest Need to Slow Disease Progression

FDA Analyses Evaluate Subgroups Based on eGFR

Evidence Highlights Uncertainties Around Efficacy and Safety in Subgroup of Patients with eGFR <60

eGFR 60 to < 90 Subgroup Has High Unmet Need and Removes Uncertainties in Patients with eGFR < 60

T1D-CKD Subgroup Improves Benefit-Risk Compared to Overall T1D Population

Overall Population

- Statistically significant A1C Reductions
- Reduction in Level 2 hypoglycemia events
- No Increased risk of Level 3 (severe) hypoglycemia
- Increased risk of DKA

2019 EMDAC Voted 8-8 Benefit-Risk

T1D-CKD

- Consistent efficacy and safety profile compared to overall population
- Most advanced CKD; population with greatest unmet need
 - Incremental benefits from similar efficacy
- SCORED supports potential long-term benefit on clinical outcomes

Improved Benefit-Risk vs Overall Population

eGFR 60 to < 90

- Removes uncertainties in patients with eGFR < 60
- Retains mild to moderate risk population that needs to slow disease progression

Improved Benefit-Risk vs Overall Population

T1D Development Program Provides Data Supporting T1D-CKD and eGFR 60 to < 90 Subgroups

— T1D

Study 309

Phase 3, randomized, double-blind, placebo-controlled

Sotagliflozin 200 mg and 400 mg

T1D (N = 793)

Study 310

Phase 3, randomized, double-blind, placebo-controlled

Sotagliflozin 200 mg and 400 mg

T1D (N = 782)

Study 312

Phase 3, randomized, double-blind, placebo-controlled

> Sotagliflozin 400 mg

T1D (N = 1,405)

$$T1D$$
-CKD (N = 116)

$$T1D-CKD (N = 118)$$

$$T1D$$
-CKD (N = 224)

eGFR 60 to
$$< 90 (N = 344)$$

eGFR 60 to < 90 (N = 612)

Sotagliflozin Proposed Indication and Dosing in T1D-CKD Population

Adjunct to insulin therapy to improve glycemic control in adults with T1D and CKD

Recommended Oral Daily Dose

- 200 mg QD, ≤ 1 hour before first meal of the day
- May be increased to 400 mg QD for patients requiring additional glycemic control

Agenda

Overview of T1D-CKD Disease, Burden and Unmet Need

Results in T1D-CKD Subgroup

Results in eGFR 60 to < 90 Subgroup

Results in Patients with Diabetes and More Advanced Kidney Disease

T1D-CKD Management, Risk Management, and Education

Conclusion and Q&A

Steven Edelman, MD

Professor of Medicine University of California, San Diego

Michael Davies, PhD

Executive Director, Clinical Development Lexicon Pharmaceuticals

Craig Granowitz, MD, PhD

Senior Vice President and Chief Medical Officer Lexicon Pharmaceuticals

Craig Granowitz, MD, PhD

Richard Pratley, MD

Medical Director at the AdventHealth Diabetes Institute Senior Investigator, Diabetes Program Lead at the Translational Research Institute

Craig Granowitz, MD, PhD

Additional Experts

David Cherney, MD, PhD

Nephrologist and Professor of Medicine, University of Toronto

Muthu Vaduganathan, MD, MPH

Cardiologist Brigham and Women's Hospital Harvard Medical School

Phil Banks, MS, FRS

Vice President, Biostatistics and Data Management Lexicon

Suma Gopinathan, PhD

Vice President, Clinical Development Lexicon

Phil Pierce, MD

Executive Director, Drug Safety Lexicon

Greg Onyszchuk, PhD

Executive Director, Head of Regulatory Affairs Lexicon

Overview of T1D-CKD Disease, Burden and Unmet Need

Steven Edelman, MD

Professor of Medicine Division of Endocrinology, Diabetes & Metabolism University of California, San Diego

Founder and Director
Taking Control of Your Diabetes
https://tcoyd.org/

People with Type 1 Diabetes Face Significantly Higher Risks of Morbidity and Mortality

T1D vs Overall Population

10X Greater Risk
Cardiovascular Disease³

6X Greater Risk End-Stage Kidney Disease⁶

4X Greater Risk
Heart Failure Hospitalization⁴

2-5X Greater Risk All-Cause Mortality⁵

CKD is Independent Predictor of Increased Morbidity and Mortality

Most Patients with Type 1 Diabetes Do Not Meet Glycemic Control Targets with Insulin Alone

Glycemic Control in T1D

~20% A1C < 7%1

 $\sim 50\%$ A1C > 8%²

 Patients not achieving A1C targets remain at significantly greater risk of complications associated with their condition

Glycemic Control Impacts Kidney Function Decline Among People with Type 1 Diabetes and CKD

AER: Albumin excretion rate

Data points represent beta estimates (±SE) from mixed-effects linear regression models

eGFR Decline and Albuminuria Associated with Hospitalization for Heart Failure in Patients with T1D

Rosengren, 2015
Adjusted for age, sex, diabetes duration, education, birth in Sweden, comorbidities, mean HDL-C and LDL-C, and treatment with lipid-lowering drugs.

Diabetes Management Aims to Minimize Disease Progression Through Improved Glycemic Control

Goals of Treatment in T1D-CKD

- Reduce risk of CV, ESKD, retinopathy, neuropathy, other complications
- ✓ Achieve glycemic targets A1C < 7.0%
 - ✓ Improve time in range
- ✓ Lower body weight and blood pressure
- ✓ Improve lipid control

Challenges with Current Glycemia Treatments Have Impacted Patients Ability to Reach A1C Goals

- Limited therapeutic options for patients with T1D-CKD
- No approved oral agents to improve glycemia
- EMDAC acknowledged
 - Existing therapies are inadequate
 - More effective, convenient glucose management options needed
- Patients experience excessive weight gain and peripheral insulin resistance, reduced quality of life

Hypoglycemia and Diabetic Ketoacidosis (DKA)

Clinicians and Patients Seek Glycemic Control Without Hypoglycemia or DKA

 Hypoglycemia and DKA are acute, serious, potentially life-threatening metabolic complications of T1D¹

Severe Hypoglycemia

5% of T1D hospitalizations²

4-10% of deaths³

DKA

0.7% of T1D hospitalizations² in patients with A1C < 8%

0.4% of deaths⁴

Standard of Care for Diagnosing and Managing DKA Based on Consensus Statements and Guidelines^{1,2}

Diagnostic Criteria						
D iabetes	Check blood glucose or history of Diabetes					
K etosis	Check urine or serum ketones at any early warning sign or illness					
Acidosis	Check for metabolic acidosis and its associated symptoms (nausea, fatigue abdominal pain, shortness of breath)					

Management [STICH Protocol]					
ST	Stop SGLT2i (if using) until ketones are back to baseline				
I	Inject short acting insulin				
С	Consume 30-60 g carbohydrate				
Н	Hydrate with 8-16 oz of fluid				

Recheck ketones every 3-4 hours and if symptoms persists or ketosis does not resolve within 4-6hrs, seek emergency care

Summary of Unmet Need for Patients with T1D-CKD

- Patients with T1D and CKD are at an increased risk of glycemic and kidney complications²
- Most patients do not achieve A1C targets with insulin alone
- Outcomes influenced by patient engagement and glucose monitoring
 - CGM, insulin pump, ketone monitoring when suspect episode
- SGLT inhibitors proven benefit in reducing HF, CKD, and death in T2D
 - Pathophysiology of CKD in T2D and T1D is similar¹
- Urgent need for a new adjunct therapy
 - Improve glycemic control
 - Diminish long-term complications from uncontrolled diabetes

^{1.} DiVincenzo, 2020; 2. American Diabetes Association Professional Practice Committee, 2024

Efficacy and Safety in T1D-CKD Subgroup

Michael Davies, PhD

Executive Director, Clinical Development Lexicon Pharmaceuticals, Inc.

Study Designs of Pivotal Phase 3 Studies

Overall Population: Phase 3 Primary Endpoints

	Study 309	Study 310	Study 312
Δ A1C (Week 24)	Primary < 0.001	Primary < 0.001	Secondary
A1C < 7.0% without SH or DKA (Week 24)	Secondary	Secondary	Primary < 0.001

T1D-CKD Subgroup Represents ~15% of Overall T1D Patients Enrolled in Phase 3 Studies

	Poole	Pooled Studies 309 / 310			Study 312	
	200 mg	400 mg	Placebo	400 mg	Placebo	
Total Randomized	524	525	526	700	705	
T1D-CKD subgroup, n (%)	85 (16%)	75 (14%)	74 (14%)	114 (16%)	110 (16%)	
eGFR ≥ 60 and UACR ≥ 30	63 (74%)	51 (68%)	52 (70%)	83 (73%)	71 (64%)	
eGFR of 45 to < 60	22 (26%)	24 (32%)	22 (30%)	31 (27%)	39 (35%)	

T1D-CKD: Baseline Demographics Similar Between Treatment Groups and Representative of US Population with T1D

		Pooled Studies 309 / 310			Study 312	
		200 mg N = 85	400 mg N = 75	Placebo N = 74	400 mg N = 114	Placebo N = 110
Age	Mean (years)	46.9	45.5	48.6	47.6	47.3
	≥ 65 years	15%	11%	19%	19%	15%
Sex	Male	59%	43%	46%	53%	50%
_	White	93%	93%	93%	86%	82%
Race	Black	2%	1%	3%	6%	9%
Region	US / Canada	53%	43%	53%	41%	46%
ВМІ	Mean (kg/m²)	29.2	28.7	29.3	28.7	28.3

T1D-CKD: Baseline Diabetes Characteristics Balanced Across Treatment Groups and Studies

	Pooled Studies 309 / 310			Study 312	
	200 mg N = 85	400 mg N = 75	Placebo N = 74	400 mg N = 114	Placebo N = 110
eGFR (mL/min/1.73m ²), mean	80.3	79.8	79.1	82.0	80.2
Normal (≥ 90)	29%	36%	31%	33%	35%
Mild (≥ 60 to < 90)	45%	32%	39%	32%	38%
Moderate (45 to < 60)	26%	32%	30%	36%	27%
UACR (mg/g), median	51	66	49	60	61
≥ 30 mg/g	87%	77%	82%	83%	80%
A1C (%), mean	7.7	7.9	7.8	8.3	8.7
≤ 8.5%	77%	75%	74%	46%	56%
Duration of T1D (years), mean	26.9	23.9	25.6	23.6	23.2
Insulin delivery via CSII	37%	39%	37%	41%	34%

CO-35

T1D-CKD: Sotagliflozin Demonstrated Significant A1C Reductions in Two Independent Datasets Through Week 24

T1D-CKD: Sotagliflozin Increases Time in Range Using CGM Compared to Placebo

T1D-CKD: Significant Reductions in Body Weight Achieved with Sotagliflozin vs Placebo

Safety in T1D-CKD Subgroup

T1D-CKD: 274 Participants Exposed to Sotagliflozin During Phase 3 T1D Development Program

	Pooled Studies 309 / 310 (52 weeks)			Study 312 (24 weeks)		
	200 mg	400 mg	400 mg	Placebo		
Number of patients	85	75	74	114	110	
Exposure (days), mean	339.1	332.4	319.8	150.0	154.9	
Total patient-years of exposure	78.9	68.3	64.8	46.8	46.6	

T1D-CKD: Safety Profile Similar to Placebo and Consistent with Overall Study Population

		T1D-0	CKD Sub	group		Overall T1D Population					
	Pooled Studies 309 / 310 (52 weeks)				y 312 reeks)	Pooled Studies 309 / 310 (52 weeks)			Study 312 (24 weeks)		
Proportion of Patients, %	200 mg N = 85	400 mg N = 75	Placebo N = 74	400 mg N = 114	Placebo N = 110	200 mg N = 524	400 mg N = 525	Placebo N = 526	400 mg N = 699		
Any AE	80%	68%	76%	59%	49%	75%	74%	71%	55%	53%	
Any severe AE	13%	8%	14%	11%	6%	10%	9%	7%	6%	4%	
Any serious AE	14%	11%	14%	11%	7 %	10%	10%	7%	7%	3%	
Any AE leading to discontinuation	4%	5%	5%	7%	4%	4%	7%	4%	6%	2%	
Deaths	0	0	3%	0	0	0	0	0.6%	0.1%	0	

T1D-CKD: Similar Incidence of Common AEs Reported Between Treatment Groups Within Each Trial

	Poole	ed Studies 309 (52 weeks)	9 / 310	Study 312 (24 weeks)		
AEs Reported in > 5% of Patients: Proportion of Patients, %	200 mg N = 85	400 mg N = 75	Placebo N = 74	400 mg N = 114	Placebo N = 110	
Any AE	80%	68%	76%	59%	49%	
Urinary tract infection	13%	3%	7%	4%	5%	
Diarrhea	9%	11%	4%	7%	3%	
Blood ketone body increased	8%	5%	1%	5%	1%	
Nausea	7%	5%	3%	7%	6%	
Constipation	6%	1%	3%	2%	3%	
Diabetic ketoacidosis	5%	7%	3%	3%	3%	
Hypoglycemia	5%	1%	1%	5%	2%	
Pollakuria	6%	0%	1%	4%	1%	
Vulvovaginal mycotic infection	2%	7%	3%	1%	1%	

Events occurring through end of treatment period

T1D-CKD: Sotagliflozin Did Not Result in Increase in AEs Leading to Study Drug Discontinuation

	Poole	ed Studies 309 (52 weeks)	Study 312 (24 weeks)		
AEs Reported in > 1 Patient: Proportion of Patients, % (n)	200 mg N = 85	400 mg N = 75	Placebo N = 74	400 mg N = 114	Placebo N = 110
Any AE leading to discontinuation	4% (3)	5% (4)	5% (4)	7% (8)	4 % (4)
Diabetic ketoacidosis	0	1% (1)	0	2 % (2)	0

AEs of Interest

- Level 2 and Positively Adjudicated Severe Hypoglycemia
- Positively Adjudicated Diabetic Ketoacidosis

T1D-CKD: Sotagliflozin-Treated Patients Experienced Fewer Level 2 Hypoglycemia Events Relative to Placebo

		T1D-(CKD Subo	group		Overall T1D Safety Population					
	Pooled Studies 309 / 310 (52 weeks)				y 312 reeks)		Studies 3 (52 weeks			y 312 reeks)	
Level 2 Hypoglycemia	200 mg N = 85	400 mg N = 75	Placebo N = 74	400 mg N = 114	Placebo N = 110		400 mg N = 525			Placebo N = 703	
Patients, % (n)	91% (77)	89% (67)	89% (66)	72% (82)	84% (92)	92% (481)	92% (482)	91% (478)	76% (528)	80% (559)	
Total events	1,002	1,120	1,390	670	713	7,129	7,133	8,995	3,512	4,682	
Events per patient per year	12.7	16.4	21.5	14.3	15.3	14.9	15.0	19.0	11.8	15.4	

T1D-CKD: Similar Rates of Positively Adjudicated Level 3^{co-45} (Severe) Hypoglycemia Across Treatment Groups

		Overall T1D Safety Population									
Positively Adjudicated	Pooled	Studies 3 (52 weeks					Studies 3 (52 weeks			Study 312 (24 weeks)	
Level 3 (Severe) Hypoglycemia	200 mg N = 85	400 mg N = 75	Placebo N = 74	400 mg N = 114	Placebo N = 110	200 mg N = 524		Placebo N = 526	400 mg N = 699	Placebo N = 703	
Patients, % (n)	7% (6)	4% (3)	18% (13)	7% (8)	5% (5)	6% (30)	4% (23)	7% (39)	3% (21)	2% (17)	
Total events	8	3	18	8	7	68	33	50	25	22	
EAIR / 100 PYE	7.6	4.4	20.1	17.1	10.7	6.3	4.8	8.2	7.2	5.7	

EAIR: exposure adjusted incidence rate

Severe Hypoglycemia defined by ADA 2024 as a severe event characterized by altered mental and/or physical status requiring assistance for treatment of hypoglycemia, irrespective of glucose level

T1D-CKD: Increased Rate of Positively Adjudicated DKA in Sotagliflozin-Treated Patients

		T1D-C	KD Popu	lation		Overall T1D Safety Population					
	Pooled Studies 309 / 310 (52 weeks)			9 / 310 Study 312 (24 weeks)			Studies 3 (52 weeks	Study 312 (24 weeks)			
Positively Adjudicated DKA	200 mg N = 85	400 mg N = 75	Placebo N = 74		Placebo N = 110						
Patients, % (n)	5% (4)	3% (2)	1% (1)	3% (3)	1% (1)	3 % (15)	4% (20)	0.2 % (1)	3% (21)	0.6% (4)	
Total events	4	2	1	3	1	16	20	1	21	4	
EAIR / 100 PYE	5.1	2.9	1.5	6.4	2.1	3.1	4.2	0.2	7.0	1.3	

Efficacy and Safety Conclusion in T1D-CKD Subgroup

Efficacy

- Significant and consistent improvements in A1C in two independent study datasets that were similar to the overall population
- Improvements in body weight and time in range

Safety

- Similar safety profile to overall population
- Consistent reduction in Level 2 hypoglycemia rate
- No increased rate of Level 3 (severe) hypoglycemia
- Increased rate of DKA, similar to overall population

eGFR 60 to < 90 Subgroup Craig Granowitz, MD, PhD

Senior Vice President and Chief Medical Officer Lexicon Pharmaceuticals, Inc.

eGFR 60 to < 90 Subgroup: Represents ~47% of Overall Population

	Poole	Pooled Studies 309 / 310 (24 Weeks)			y 312 /eeks)
	200 mg	400 mg	Placebo	400 mg	Placebo
Overall Population, N	524	525	526	699	703
eGFR ≥ 90, n (%)	232 (44%)	241 (46%)	257 (49%)	355 (51%)	361 (51%)
eGFR ≥ 60 to < 90, n (%)	270 (52%)	259 (49%)	245 (47%)	312 (45%)	300 (43%)
eGFR < 60, n (%)	22 (4%)	25 (5%)	24 (5%)	32 (5%)	42 (6%)

eGFR 60 to < 90 Subgroup: Achieves Meaningful A1C Reduction

Relative Risk [95% CI]

eGFR 60 to < 90 Subgroup: Reduction in Level 2 Hypoglycemia

Level 2 hypoglycemia = hypoglycemia events with blood glucose levels ≤ 55 mg/dL

eGFR 60 to < 90 Subgroup: No Increased Risk of Severe Hypoglycemia

EAIR = Exposure-adjusted incidence rate

eGFR 60 to < 90 Subgroup: Increased Risk of DKA, Lowest Among eGFR Subgroups

EAIR = Exposure-adjusted incidence rate

eGFR 60 to < 90 Subgroup has High Unmet Need and Removes Uncertainties in Patients with eGFR < 60

- Meaningful A1C reductions
- Reduction in Level 2 hypoglycemia events
- No increased rate of Level 3 (Severe) hypoglycemia
- DKA rate lowest among subgroups evaluated and lower than overall population

Planned Patient Selection, Education and Risk Minimization Activities to Ensure Safe Use of Sotagliflozin

Patient history informs physicians on appropriate patient selection

- ✓ Normal baseline blood beta hydroxybutyrate (BHB) levels
- ✓ Ability to maintain prescribed insulin management regimen
- ✓ Willingness to self-monitor
- ✓ Follows "sick day" rules
- ✓ No recurrent DKA within 12 months

"Sick Day" rules when ill or symptoms of DKA: Continue taking insulin and diabetes pills as usual. Test blood sugar every 4 hours. Measure ketones and blood beta hydroxybutyrate (BHB) levels when suspect hyperglycemia. Stay hydrated, drinking plenty of water. Treat diarrhea or vomiting to prevent dehydration.

Distribution and Education Plan for Patient and Physicians to Facilitate Safe Use of Sotagliflozin

Patient Materials

- Medication guide
- ✓ STICH guidelines¹
- Patient wallet card
- ✓ Patient tear sheet
- Educational videos

Physician Materials

- Medication guide
- Dear HCP letters
- ✓ Dear pharmacist letter
- ✓ Scientific exchange

Results in Patients with Diabetes and More Advanced Kidney Disease Craig Granowitz, MD, PhD

Senior Vice President and Chief Medical Officer Lexicon Pharmaceuticals, Inc.

SCORED Study

Long-Term Clinical Benefits of Sotagliflozin – T2D-CKD and Other CV Risk Factors

T2D-CKD SCORED: Phase 3, Multicenter, Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Study

Primary Endpoint: Composite of total occurrence of cardiovascular death, hospitalization for heart failure, and urgent visit for heart failure

T2D-CKD SCORED: 25% Reduction in Risk of CV Death and HF-Related Events With Sotagliflozin

T2D-CKD SCORED: Consistent Benefit of Sotagliflozin Across Hierarchically Tested Secondary Endpoints

T1D-CKD Management, Risk Management, Patient Education Richard Pratley, MD

Medical Director at the AdventHealth Diabetes Institute Senior Investigator, Diabetes Program Lead at the Translational Research Institute

Most People with Diabetic Kidney Disease Die of Heart Failure or Atherosclerotic CV Events Prior to ESKD

Progression of Cardiovascular-Kidney-Metabolic (CKM) Syndrome

- Similar pathophysiology of CKM in T1D and T2D
- Need to treat patients with T1D early to prevent progression to Stages 3 and 4

- Heart failure
- Peripheral artery disease
- Stroke
- Atrial fibrillation

Patients with T1D and CKD Have Limited Therapeutic Options

TOD Thereise

Toract

 ADA / KDIGO recommendations offer many more therapy options for T2D patients and CKD

<u>12D Inerapies</u>	<u> 11D Inerapies</u>
Insulin	Insulin
Metformin	Pramlintide
Sulfonylureas	
Glucagon-like peptide-1 receptor agonist (GLP-1RA)	
Sodium-glucose cotransporter-2 inhibitor (SGLT2i)	
Renin-angiotensin system inhibitor (RAS)	RAS
SGLT2i	
Nonsteroidal mineralocorticoid receptor antagonist	
Statins/LLD, RAS, calcium channel blocker, diuretic	Otaline (LID. DAO, estates
SGLT2i	Statins/LLD, RAS, calcium channel blocker, diuretic
GLP-1RA	Dissillar, diarotto
	Insulin Metformin Sulfonylureas Glucagon-like peptide-1 receptor agonist (GLP-1RA) Sodium–glucose cotransporter-2 inhibitor (SGLT2i) Renin-angiotensin system inhibitor (RAS) SGLT2i Nonsteroidal mineralocorticoid receptor antagonist Statins/LLD, RAS, calcium channel blocker, diuretic SGLT2i

Need to Avoid Risks Caused by Poor Glycemic Control

- Every 1% increase in A1C associated with
 - 54% increase in 1st MACE and 77% for subsequent events¹
 - > 3-fold increase in HF risk¹
 - > 2.5-fold increase in CV death¹
 - 2-fold increase in kidney outcomes²
 - > 2-fold increase in retinopathy³

Patients with T1D-CKD Gain Clinically Meaningful Improvements in Multiple CKM Endpoints with Sotagliflozin

- Improvement in glycemic control
 - Improved A1C
 - Improved time in range
 - No increase in hypoglycemia
- Clinically meaningful reductions in body weight
- Potential benefits on long-term kidney and CV outcomes
 - Demonstrated evidence of benefit in patients with T2D based on SCORED

CO-68

- Patients with T1D-CKD have established history that informs clinicians on level of engagement
- Successful patients:
 - Able to maintain prescribed insulin regimen

 - Monitor and manage glucose excursions
 - Effectively use diabetes devices (e.g., CGM, insulin pump)
 - Ketone measurements for suspected DKA
 - Willing to take additional steps to improve glycemic control
 - Glycemic targets are less aggressive in those who can't recognize or take steps to mitigate glucose-related risks

Sotagliflozin Addresses the Urgent Need for Therapies for Patients with T1D and CKD

CO-69

- Improves A1C
 - Improves time in range without increasing severe hypoglycemia
- Increases DKA risk
 - Careful patient selection and education is very important to lessen risk
- Potential CKD benefits from improved glycemic control

Patients engaged in their diabetes management, and willing to initiate new treatments should have access to Sotagliflozin

Conclusion Craig Granowitz, MD, PhD

Senior Vice President and Chief Medical Officer Lexicon Pharmaceuticals, Inc.

Sotagliflozin Proposed Indication Intended to Help T1D Patients with Highest Risk

Adjunct to insulin therapy to improve glycemic control in adults with T1D and CKD

Positive Sotagliflozin Benefit-Risk in Patients with High Unmet Need (T1D-CKD and eGFR 60 to < 90 Subgroups)

Overall Population

- Statistically significant A1C Reductions
- Reduction in Level 2 hypoglycemia events
- No Increased risk of Level3 (severe) hypoglycemia
- Increased risk of DKA

2019 EMDAC Voted 8-8
Benefit-Risk

T1D-CKD

- Consistent efficacy and safety profile compared to overall population
- Most advanced CKD; population with greatest unmet need
 - Incremental benefits from similar efficacy
- SCORED supports potential long-term benefit on clinical outcomes

Improved Benefit-Risk vs Overall Population

eGFR 60 to < 90

- Removes uncertainties in patients with eGFR < 60
- Retains mild to moderate risk population that needs to slow disease progression

Improved Benefit-Risk vs Overall Population

Sotagliflozin to Improve Glycemic Control in Adults with Type 1 Diabetes (T1D) Mellitus and Chronic Kidney Disease (CKD)

October 31, 2024

Endocrinologic and Metabolic Drugs Advisory Committee Lexicon Pharmaceuticals, Inc.

Back Up Slides Shown

T1D-CKD: Investigator-Reported and Positively Adjudicated DKA Events

	Pooled	Studies 309	and 310	Stud	y 312	Pooled Studies 309 and 310 Study 312			y 312	
Patients, % (n)	200 mg N = 85	400 mg N = 75	Placebo N = 74	400 mg N = 114	Placebo N = 110	200 mg N = 270	400 mg N = 259	Placebo N = 245	400 mg N = 312	Placebo N = 300
Investigator Reported DKA / metabolic acidosis	6% (5)	7% (5)	3% (2)	4% (5)	3% (3)	4% (12)	7 % (17)	1% (3)	3% (9)	0.3 % (1)
Positively adjudicated DKA	5% (4)	3% (2)	1% (1)	3 % (3)	1 % (1)	2 % (5)	3 % (7)	0.4% (1)	2 % (7)	0.3 % (1)

Positively Adjudicated DKA: Summary of Potential Possible Risk Factors, Pooled 309/310/312

	T1D-CKD N = 274	T1D eGFR 60 to < 90 N = 841
Sotagliflozin treated - total DKA	9	19
Infection	3	5
Illness	6	4
Insulin issue	0	4
Other	0	2
None identified	0	4

Figure 36: eGFR Change from Baseline through Week 52 in the T1D-CKD Population in Pooled Studies 309 and 310

CKD: chronic kidney disease; eGFR: estimated glomerular filtration rate; LS: least squares; T1D: type 1 diabetes mellitus

Figure 37: Urine Albumin-to-Creatinine Ratio Change from Baseline through BF-38 Week 52 in the T1D-CKD Population with Baseline UACR ≥30 mg/g in Pooled Studies 309 and 310

CKD: chronic kidney disease; SE: standard error; T1D: type 1 diabetes mellitus; UACR: urine albumin-to-creatinine ratio

Negative Cardiorenal Outcomes in Adults are Equal or Greater in T1D than T2D

Baseline Characteristics Across T2D-CKD SCORED and T1D-CKD Pooled Studies 309 / 310, and 312

allu i ib-ck	D Puble	a Stud	162 203	/ 310, 6					
	T2D-	CKD		T1D-CKD Subgroup					
	SCOF	RED ¹	Pooled 9 309 /		Study	312			
Mean	Sotagliflozin N = 5,292	Placebo N = 5,292	Sotagliflozin N = 160	Placebo N = 74	Sotagliflozin N = 114	Placebo N = 110			
Age (years)	68	68	47	49	48	47			
Female (%)	44%	46%	49%	54%	47%	50%			
BMI (kg/m²)	33	32	29	29	29	28			
Diabetes Duration (years)	17	17	26	26	24	23			
A1C (%)	8.7	8.7	7.8	7.8	8.3	8.7			
SBP (mmHg)	138	138	127	128	125	128			
eGFR (mL/min/1.73 m²)	44	44	80	79	82	80			
Median UACR (mg/g)	80	84	54	49	60	61			
ACEi (%)	38%	39%	33%	47%	38%	38%			
ARB (%)	50%	48%	19%	22%	20%	19%			

^{1.} Bhatt, 2021