

Regulatory Science Challenges for Generative AI Applications in Medical Devices

Digital Health Advisory Committee

November 20, 2024

Victor Garcia and Aldo Badano

Office of Science and Engineering Laboratories Center for Devices and Radiological Health U.S. Food and Drug Administration

Regulatory science for accelerating patient access to innovative, safe and effective medical devices

An official we

FDA U.S.

Office of Science and Engineering Labs (OSEL/CDRH/FDA)

Dedicated to promoting innovation for the development of new lifesaving medical devices

OSEL is organized into 20 program areas

AI/ML program is one of the largest

OSEL outputs are regulatory science tools (RSTs)

Innovative tools for assessing safety or effectiveness of emerging technology that innovators can readily (and voluntarily) incorporate into all stages of device development

A U.S. FOOD & DRUG				Q Search E Menu
	Regulatory Science Tools Catalog			
Fools Categories				
⊃ Lab Method (30)			Search Tool Catalog	Search
Computer Model (21)				
🗇 Dataset (6)				
Phantom (2)				
Physical (1)	In 1 Trace		In 13 head	
Clinical Outcome Assessment (1)	VICTRE: In Silico Breast Imaging Pipeline Computer Model	Targeted Box and Blocks Test (tBBT) Clinical Outcome Assessment	The Virtual Family: A set of anatomically correct whole-body computational models	Toolkit for Evaluation of Head Mounted Display Image Quality Lab Method
rogram Areas	The Virtual Imaging Clinical Trials for	A performance-based method requiring	Computer Model	This tool allows for the creation of
Cardiovascular (18)	Regulatory Evaluation (VICTRE)	controlled grasping, transport, and release of objects that can be used to	The Virtual Family provides detailed	immersive 3D scenes using a web browser. WebXR allows for an instant
Medical Imaging and Diagnostics (13)	tools that allow for the replication of	evaluate upper limb functional ability.	models of the human anatomy including	deployment of any 3D scene and script
Orthopedic Devices (8)			an adult male, an adult female, and tw	
Biocompatibility and Toxicology (6)	Medical Imaging and Diagnostics	Human Device Interaction Orthopedic Devices Neurology	Orthopedic Devices Ophthalmology Neurology Medical Imaging and Diagnostics	Medical Extended Reality

RST Catalog: https://cdrh-rst.fda.gov/

FDA

www.fda.gov/about-fda/cdrh-offices/office-science-and-engineering-laboratories

Generative AI in Healthcare

Meskó, B., Topol, E.J. The imperative for regulatory oversight of LLMs (or generative AI) language models in healthcare. *npj Digit. Med.* 6, 120 (2023)

Regulatory Science Challenges for GenAI-Enabled Medical Devices

- Difficulty in defining scope of product's intended use, e.g., due to open-ended inputs and outputs
- Foundation models not under the provenance of medical device manufacturer
- Providing oversight for an adaptive system
- Identification of hallucinations
- Adequacy of data sets for testing, including diversity
- Evaluation of and monitoring for performance in the real world, including bias
- Providing transparency to users

FDA

Source: Indiana University Chest X-ray Collection | Open-i ©Copyright Policy- open-access License No changes were made.

Performance Assessment Strategies for GenAl in Healthcare

Benchmarking

with standardized reference datasets

Expert evaluation

including holistic evaluation of Alhuman interactions Model-based evaluation

including automated testing

OSEL Accelerating patient access to innovative, safe, and effective medical devices through best-in-the-world regulatory science

Performance Assessment Strategies: **BENCHMARKING**

Y LLM Benchmark

Select Columns to Display:

MATH Lvl 5 Raw

MMLU-PRO Raw

Precision

#Params (B)

Submission Date

Chat Template

Base Model

BBH Raw

Average

BBH

MUSR

Search

What is it?

Evaluating models on specific tasks using external test datasets and predetermined metrics.

Advantages

- Practical and available
- Allows head-to-head comparisons
- Large scale

Disadvantages

- Limited in tasks and datasets
- Train-to-the-test overfitting

Performance Assessment Strategies: **EXPERT EVALUATION**

FDA

Performance Assessment Strategies: MODEL-BASED EVALUATION

Performance Assessment Strategies: MODEL-BASED EVALUATION FDA

What is it?

Evaluating models using a *modelbased approach* (may be based on genAI) with human oversight

Advantages

- Augments human evaluation
- Scalable

Disadvantages

- Burdensome validation
- Inter-model leakage

Current research in OSEL aims at developing a case-agnostic approach to characterizing factual accuracy: e.g., are the findings in the genAI-generated report found in the reference report?

Summary

For some GenAl, known evaluation strategies may apply

For some GenAl, new evaluation methodologies and new performance metrics may need to be developed

Performance evaluation requirements are governed by the intended use and associated risk

Totality of evidence may include pre- and postmarket elements

Thank you for your attention

Victor Garcia victor.garcia@fda.hhs.gov

Aldo Badano <u>aldo.badano@fda.hhs.gov</u> Office of Science and Engineering Laboratories Center for Devices and Radiological Health U.S. Food and Drug Administration

www.fda.gov/about-fda/cdrh-offices/office-science-and-engineering-laboratories

D