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* Weakly Supervised Models for Pathology

- CLAM (Nature BME, 2021)

- Cancers of Unknown Primary (Nature, 2021)

- Cardiac Allograft Rejection (Nature Medicine, 2022)

Multimodal Data Integration

- Pan-cancer, fusing histology and genomics (Cancer Cell, 2022)

Foundation Models
- Vision centric foundation model (Nature Medicine, 2024)

- Vision-language foundation model (Nature Medicine, 2024)

Generative Al for Pathology
- PathChat (Nature, 2024)
Transitioning from 2D to 3D Pathology
- TriPath (Cell, 2024)

Bias and Fairness

- Do foundation models reduce model bias? (Nature Medicine, 2024)
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Problem Formulation

Slide-Level Task: Given ~150K x 150K image
(e.g. —Whole-Slide Image or WSI), predict:
 Cancer stage / subtype

e Survival outcome

* Response-to-treatment
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CLAM Workflow

* Weakly supervised learning from B enainecring © ARTICLES
histology whole slide images. —

. . Data-efficient and weakly supervised
* Ada pts Attention Based Multl P le computational pathology on whole-slide images

I n Sta n C e Le a r n i n g fO r C O m p u ta ti O n a l Ming Y. Lu®'?3, Drew F. K. Williamson ©'#, Tiffany Y. Chen®'5, Richard J. Chen ©'#, Matteo Barbieri'?

and Faisal Mahmood %232

Pa t h O lo gyo Deep-learning methods for computational pathology require either manual annotation of gigapixel whole-slide images (WSlIs)

or large datasets of W5Is with slide-level labels and typically suffer from poor domain adaptation and interpretability. Here
we repurt an interpretable weakly supervised deep-learning metllod for data-efﬁ:ient wsl prooessing and Iearnlng that
olyreq ires Ide-levllabel Themelhud wh hwe ng- trai “—lonmull

* Used pre-trained feature encoders S e e e s S e

instead of end-to-end training. “m““" A

A dvnmcac in disital hoal and avtificial intalli o havea Ai ae whars anhe o handfal Af svananlas mas aviet e faoe ~liniaal

ierital mathalaos

* Easy to use codebase.
[ CLAM | Public

Data-efficient and weakly supervised computational pathology on
whole slide images - Nature Biomedical Engineering

P \0) Mahmood Lab (Nature Biomedical Engineering, 2021 ® Python K1k % 350
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Tumor Origin Prediction Primary vs. Metastatic Prediction

Cancers of Unknown Prir » -
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. . . . . JNature BME, 2024 — in press)
Integrating histology + genomics for origin prediction
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PORPOISE: Overview (http://pancancancer.mahmoodlab.org)
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Network Architecture
* Unimodal branch for WSIs using CLAM / ABMIL
 Unimodal branch for Mut+CNV+RNA using SNN
 Multimodal Fusion via Kronecker Product

“hen et al., Cancer Cell 2022
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Endomyocardial Biopsy Assessment

Endomyocardial biopsy assessment

WSI
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(Nature Medicine, 2022)

Diagnosis

1 =

Rejection type:

 Acute cellular
Antibody-mediated
Cellular + antibody
Quilty B lesion (benign)

Rejection grade:
v Low (grade 1)
High (grades 2, 3)

\

ARTICLES

https://doi.org/10.1038/541591-022-01709-2
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M) Cheack for updates

Deep learning-enabled assessment of cardiac
allograft rejection from endomyocardial biopsies

Jana Lipkova @123 Tiffany Y. Chen (%23 Ming Y. Lu®'234 Richard J. Chen'?35, Maha Shady 235,
Mane Williams'235, Jingwen Wang'¢, Zahra Noor', Richard N. Mitchell ©'7, Mehmet Turan®,

Gulfize Coskun®, Funda Yilmaz©°®, Derya Demir®, Deniz Nart®, Kayhan Basak', Nesrin Turhan',
Selvinaz Ozkara'™, Yara Banz", Katja E. Odening'?" and Faisal Mahmood ©)"23141554

Endomyocardial biopsy (EMB) sc ing rep ts the d of care for detecting allograft rejections after heart trans-
plant. Manual interpretation of EMBs is affected by substantial interobserver and intraobserver variability, which often leads
to inappropriate treatment with immunosuppressive drugs, unnecessary follow-up bmpﬂes and poor transplant outcomes.
Here we present a deep learning-based artificial intelligence (Al) sy for aut t of gigapixel whole-slide
images obtained from EMBs, which simultaneously addresses detedlon, subtyping and grading of allograft rejection. To assess
model performance, we curated a large dataset from the United States, as well as independent test cohorts from Turkey and
Switzerland, which includes large-scale variability across populations, sample preparations and slide scanning instrumentation.
The model detects allograft rejection with an area under the receiver operating characteristic curve (AUC) of D 962; assesses
the cellular and antibod, diated rejection type with AUCs of 0.958 and 0.874, r tively; detects Quilty B lesi

mimics of rejection, with an AUC of 0939, and dilferentialm between low-grade and hlglu-grade re,]e:ﬁons wrﬂl an AUC of
0.833. In a human reader study, the Al syst ferior performance to t and red
interobserver variability and assessment time. This wbusl mluatlon of urdlat allograft rejection paves the way for clinical
trials to establish the efficacy of Al-assisted EMB assessment and its p | for imp g heart lant outcomes.

United States and the most rapidly growing cardiovascu-

lar condition globally''. For patients with end-stage heart
failure, transplantation is often the only viable solution’. Cardiac
allograft transplantation is associated with significant risk of rejec-
tion’. To reduce the incidence of rejection, patients receive individ-
ually tailored im PP regimens after transplantation.
Despite the medications, cardiac rejection remains the most com-
mon and serious complication, as well as the main cause of mortal-

( :ardiac failure is a leading cause of hospitalization in the

several revisions to the official guidelines, the interpretation of
EMBs remains challenging with limited interobserver and intrao-
bserver reproducibility’ . Overestimation of rejection can lead to
increased patient anxiety, overtreatment and unnecessary follow-up
biopsies, whereas underestimation may lead to delays in treatment
and ultimately to worse outcomes.

Deeplearning-based, objective and automated assessment of
EMBs can help to mitigate these challenges, potentially improv-
ing reproducibility and transplant outcomes. Multiple studies have
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MIL Frameworks

For patient j, input: WSI X/ target: clinical endpoint Y/

I

- Lung cancer subtype Y/ = {Lung squamous cell carcinoma, Lung adenocarcinoma}
- Gene mutation Y/ = {wildtype, mutated}

Problem formulation ;
) ) "
Classification P(YJ = le]) _ __exp(wi(X7))

Yi=1 eXPWi (X))

EEE) (Multinomial) Logistic regression!

Slide scanner ) WSI Segmentation & patching
Patch embeddings WSI embedding
Feature o _ . WSI
extractor Aggregator E Predictor prediction
Input patching Feature extraction JUELC Predicti
. rediction
—) —> aggregation ) S

X = (), .., %)) z) = f(x)),fori=1,..,N Y/ = he (2))

5j JAN
7z = g({Zl- i=1)
N > 10,000 f: neural network

o & R256%256% 3 S € R768 (for ViT) g: max/ average / NN
L 2




Why do we need foundation models for pathology?

* Foundation models are generic models capable of
generally encoding data into meaningful
representations.

* Can be applied to many downstream tasks with
minimal data (rare diseases, clinical trials etc.)

* Ideal for multi-task, multi-tissue models.

* Not necessarily meant to completely replace
supervised, task specific models.
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http://github.com/mahmoodlab/
http://github.com/mahmoodlab/UNI
http://github.com/mahmoodlab/CONCH
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UNI: Mass-100K - 100K WSis for largg—scale vision SSL pretraining

Heart
Lung
* 100 million patches sampled across Kidney
100,000+ WSils Bowel
Soft tissue
Brain
* 380+ unique Oncolree Codes and other Esophagogastric

Endocrine
Female genital tract
Lymphatic system
* WSIs from commonly used benchmarks Liver biliary tract

(e.g. TCGA) are not included to avoid Male genital tract

disease labels

Organs

data leakage in downstream evaluation Bri:;
Bone
Pancreas
Mass-100K represents the largest and most Head & Neck
diverse SSL pretraining dataset including Peritoneum
neoplastic, infectious and inflammatory - Bladder
. yeé , . : . :

diseases. 0 2000 4000 6000 8000 10000
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UNI: Pretraining via DINOv2 view ot
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* Dinov2 SSL pretraining recipe
combing masked image modeling

and self-distillation : f;'-p.
E@ Bg ]
* 4 x8A100 GPUs for multi-node -
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UNI: Overview of Tasks (Nature Medicine, 2024)
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Weakly supervised slide-level classification_
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(Nature Medicine, 2024)
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UNI: OT-43/108 - A new large-scale subtyping benchmark

* Oncolree-43 (OT-43): 43-way cancer type
classification

* Oncolree-108 (OT-108): 108-way OncoTlree
Code (cancer subtype) classification

* Challenging, large, representative benchmark
for assessing performance of SSL pretrained

encoders
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CONCH: CONtrastive learning from Captions for
Histopathology

Image / Caption
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(Nature Medicine, 2024)

Zeroshot classification

Zero shot classification through

prompting! B CONCH BiomedCLIP
PLIP B OpenAlCLIP
4 Slide-level benchmarks (using MI-Zero): -1 H ----- J[| ------------------------------------------------
- TCGA BRCA subtyping
- TCGA RCC subtyping 3
- TCGA NSCLC subtyping £ :
- DHMC LUAD pattern classification § 05{ 4 |
3 Patch-level benchmarks (using CLIP- 5
style zeroshot): N
- SICAP gleason grading 025
- CRC100k tissue type classification
- WSSS4LUAD tissue type classifcation
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(Nature Medicine, 2024)

Fewshot classification
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1. CONCH zeroshot is a strong baseline for classification, competitive with supervised few-shot learning by SOTA
visual language encoders.
2. CONCH image encoder is more label efficient and often requires few labels to reach competitive performance
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UNI and CONCH External Validation: Biomarker Assessment and FM Comparisons

Biomarker Tasks
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Neidlinger et al., Benchmarking foundation models as feature extractors for weakly-supervised computational pathology. arXiv, 2024.



UNI and CONCH External Validation: Performance Efficiency Assessment

* UNI continues to be
the SOTA ROI MSKCC NSCLC 10 Prediction AUC Performance vs. Parameter Efficiency

foundation modelon9 1.00

disease detection and “ T
. 0.65 0.99
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Campanella et al., A Clinical Benchmark of Public Self-Supervised Pathology Foundation Models. arXiv, 2024.



UNI and CONCH

Slide Feature Extraction Speed Patch Feature Extraction Speed Storage Cost Extraction Time Cost
3.0 3500 | 3000 250
25 < 25001 §
2800 | S B 200
B g
e D £ &
220 g & 20001 g
5 2 2100 = 2 150
3 o ) 8
€15 8 O 1500 F
g 8 C 8
§ F 1400 1 % 5 100
S 1.0 2 © 1000 T
% 1.0 8 o a
g o
o [=]
700 7 8 50
) w 500_. E
00! ol | I o]
CONCHv1 UNIv1  Virchow H-Optimus CONCHv1 UNI1  Virchow H-Optimus CONCHv1 UNIv1  Virchow H-Optimus CONCHv1 UNIv1  Virchow H-Optimus
(ViT-B) (ViT-L) (ViT-H)  (ViT-g) (ViTB) (Vi) (VitH)  (ViT-g) (ViT-B) (ViT-L) (ViT-H)  (ViT-g) (ViT-B)  (ViT-L) (ViT-H)  (ViT-g)
* Includes 10 and CPU-GPU comm * Excludes 10 and CPU-GPU comm Pan-Cancer TCGA Sllde Retrieval Performance
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* Non-overlapping [256 x 256] patch feature
extraction from 11,661 WSiIs in the TCGA

* Approx. 13,353 tissue patches per WSI (155.7M
tissue patches in total)
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* 32-class ROIl-level pan-cancer tissue retrieval
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Slide level SSL

Whole-slide image
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Patch encoder ‘j}
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Caption
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Generated caption

'Image displays a lymph node featuring
a prominent germinal center. This center
is enveloped by a mantle zone filled with

. small lymphocytes.....

|

generator
(PathChat)

4
r
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COCA pretraining

T

Pathology report

" The right neck mass shows metastatic
squamous cell carcinoma. The tumor
is 0.8 cm in its greatest dimension

-

SlideSSL
(Teacher)

Knowledge
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(Unpublished)



Slideg, : A Vision-Language Slide Foundation Model for CPath

ROI-Level Slide-Level
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Representation

e Avision-language foundation model that
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whole slide level 0.75.

8 0.60

e Over 400K WSIs paired with synthetic X 445
5 0-491

pathology reports created by PathChat < 130
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* No weakly-supervised MIL needed in
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Morphological Subtyping
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directly extracting powerful slide features
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Slideg, : Few-Shot Performance and Human Pathology Atlas Development
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Slide, : Zero-Shot Slide Classification and Report Generation

Slide embedding " Ours Top-K pooling [ PRISM

Whole-slide image Text prompts

space
32,768 px 1.0
. (| [ An example of g 0-9
-~ yol transitional meningioma <
x % o - 0.8
o o 2 | (An example of @
33_ g ﬁ glioblastoma, IDH-wildtype S 0.7
3 n X ®
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L] o . 06
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Brai 0 BRCA NSCLC
eBrains
TCGA-UTTCGA-OT OT108 (fine) (TCGA) (TCGA)
Clinical report Ours (generated) PRISM (generated)

microscopic examination of the
provided slide confirms a diagnosis
of squamous cell carcinoma
originating from the uterine cervix.

The slide from the cervix uteri
shows a poorly differentiated
squamous cell carcinoma.

Diagnosis: High-grade
serous carcinoma of
unspecified organ.

TCGA-C5-A3HE
(Public)

Clinical report Ours (generated) PRISM (generated)
7o) ﬂrhe slide from the brain shows a h @Iicroscopic analysis of the brain biopsy )
& glioblastoma multiforme (Astrocytoma | |indicates a high-grade glioblastoma,
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§ o multinucleated malignant astrocytic (w.h.0.) grade iv (icd-0 9440/3), 'agnf.obs's' igh-gra T #
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8 = nucleomegaly, frequent mitotic activity, | |atypical features, frequent mitotic activity, FOTEL DA,
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2o : \necrosis. significant areas of necrosis.
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MADELINE: Contrasting HE with IHCs, Special Stains
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TANGLE: A Slide-Level Foundation Model with H&E + Transcriptomics

Slide-Level Pretraining
Patch embedding SSL

Slide + Expression SSL
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a.

Primary Organ

THREADS: A contrastive foundation model with Histology + Genomics
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(Unpublished)
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(Unpublished)
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Treatment Response Tasks using THREADS
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(Unpublished)



Generative Al for Pathology

What do we need to build a universal
multimodal chatbot for anatomic
pathology?

* Avisual centric pathology
foundation model.

* Avision-language foundation
model.

* Alarge instruction dataset using

with pathology images, questions

and responses.

Robust evaluation.

i

ﬁ'ﬁ% % Mahmood Lab

"‘.'-_o/IIO""pAI for Pathology
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A multimodal generative Al copilot for
human pathology
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Computational pathology'?has witnessed considerable progress in the development
of both task-specific predictive models and task-agnostic self-supervised vision
encoders®*. However, despite the explosive growth of generative artificial intelligence
(Al), there have been few studies on building general-purpose multimodal Al
assistants and copilots® tailored to pathology. Here we present PathChat, a vision-
language generalist Al assistant for human pathology. We built PathChat by adapting
afoundational vision encoder for pathology, combining it with a pretrained large
language model and fine-tuning the whole system on over 456,000 diverse visual-
language instructions consisting of 999,202 question and answer turns. We compare
PathChat with several multimodal vision-language Al assistants and GPT-4V, which
powers the commercially available multimodal general-purpose Al assistant
ChatGPT-4 (ref. 6). PathChat achieved state-of-the-art performance on multiple-
choice diagnostic questions from cases with diverse tissue origins and disease
models. Furthermore, using open-ended questions and human expert evaluation,

we found that overall PathChat produced more accurate and pathologist-preferable
responses to diverse queries related to pathology. As aninteractive vision-language
Al copilot that can flexibly handle both visual and natural language inputs, PathChat
may potentially find impactful applications in pathology education, research and
human-in-the-loop clinical decision-making.

(Nature, 2024)
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Cellular Features
150000 x 150000

256 x 256
Cellular Organization

16 x 16
Tissue Phenotypes

4096 x 4096




16 x 16
Cellular Features

Fine grained understanding of pathology
regions at the cellular leads to slide level and

256 x 256 patient level descriptions.

Cellular Organization

Pathology reports are at the level of the slide
or patient and don’t have fine grained

4096 x 4096 morphologic details.

Tissue Phenotypes
We need fine grained morphologic details at
the level of cellular organization and tissue
phenotypes to have a close relation between
text-image pairs which can be used to train
PathChat.

150000 x 150000 S

(]




(Nature, 2024)

Building PathChat

i
) = What is the key Q;Which of the following Q: Could you describe the key
Educational : histopathological feature represents a microscopic morphological features observed in
Sources observed in the image of ' ; mimic of inflamed Sertoli-Leydig cell tumors (SLCT)...?
this upper neck mass? i dentigerous cyst? & . "| 1l A: Sertoli-Leydig cell tumors exhibit...
. N T @ Ameloblastic fibroma Q: How would you differentiate a SLCT
- A: Z"ozgzlgnhagg tgtivz;gslt'cal AN A Mandibular buccal bifurcation cyst with...? ' _
® an Case Reports feature is thep resenge of... ‘ @ Odontogenic myxoma A: Immunohistochemistry plays a crucial role
— P A: A Mandibular buccal bifurcation... : n distinguishing...
' Free response Text only
=
Image Q: What is the primary O What is shown in [£5% el || Q: Based on the information
Captions architectural pattern...? [ e this image? B, Gy provided, what is the most
The primary architectural |87 & « 28 = Upon examining S ‘ likely diagnosis for this
patterns are... - the image... several S ey & liver biopsy?
. key findings are R~ 3
WSI observed in this tumor? observed...the A: Sorry, as an Al assistant specialized in
Regions The epithelial ce/ls observed in this most likely pathology, | cannot assist you with non-
tumor are described as... diagnosis is a... pathology related inquiries.
Conversation Description Guardrails
Vision SSL (UNI) Visual-language pretraining (CONCH) PathChat MLLM

+ Instructions

~100 million patches * ﬁ

from ~100 thousand
slides

1.18 million image-
caption pairs




Welcome to PathChat!

®




Welcome to PathChat!

®

{ @J Type your message here... }
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Accuracy

1.0 1
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A
3
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C
D
E
F.

G
H
.

and unintentional weight loss over the past 5
months. Chest X-ray shows a dense, spiculated

What is the most likely diagnosis?
A. Lung adenocarcinoma

J. Large cell neuroendocrine carcinoma
Answer with the option's letter from the given
choices directly.

63-year-old male presents with chronic cough

(Nature, 2024)
PathChat

1X31u09

cm mass.

v [ A. Lung adenocarcinom:\)

. Typical carcinoid tumor

~ I. Lung squamous cell

. Atypical carcinoid tumor MLLM x - carcinoma

. Hamartoma of lung '
. Meningothelial-like nodule

Pneumocytoma

LLaVA 1.5

. Small cell carcinoma

. Large cell carcinoma x [carcinoma

ydwoud

J. Large cell neuroendocrir::_]

Lung squamous cell carcinoma

GPT4V

v (A. Lung adenocarcinoma

LLavA-Med | LlavA1s [l GPTav

* *
*
* ¥ *
*
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Panel of 7 pathologists ranked by each expert

Shuffled and de-identified responses

& - &5

+

| Question #5:

and a lower abdominal mass.

4 Al assistant models

.| PathChat _ LLaVvA15
LLaVA-Med [ | GPT4v

| [ | <Response 1>
| '] <Response 2>
"] <Response 3>
["] <Response 4>

—_—

+

Describe the cellular morphology
| visible in the image from a patient
presenting with uterine bleeding

~

Expert rankings

(Nature, 2024)

Win / tie / lose
record of PathChat
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Al Agent for Computational Pathology - Preview I (!

« Al agents do things for you!

* What if Al agents could do all biomedical data analysis for you?

* What if an Al agent could develop, assess, and explain Al models for pathology?
* What if an Al agent could write code, run experiments and test hypothesis?

* What if an Al agent could continuously run in the background attempting to find

common morphologic features across patient cohorts and correlate with
outcome?

(Unpublished)
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Motivation Transitioning from 2D to 3D pathology

Human tissue is inherently 3D
=> Current clinical practice - microscopic analysis of thinly-sliced 2D tissue section

Active development of 3D tissue imaging modality

CODA - serial sectioning & registration Microcomputed tomography Open-top light-sheet microscopy
(microCT) (OTLS)
. 12cm
7.5 cm///]ﬁ\\\
i . zni icm I Li"‘ilgnaging volum;*rA

Motorized ‘

P o e O
XYZ stage Immersion

medium

a

| Light-sheet 0oDO
z illumination ‘ imaging path

o 0" e AN
@ a2 5! | “ i
jaiitsd Y G— e ol
x imaging path

Nonlinear registration grid overlay

o

Center

Image n

Kieman A. et al., Nature Methods, 2022 Glaser K. et al., Nature Methods, 2022

Whole volume > Portion of volume
» Infeasible for pathologists to manually examine 3D data

» There does not exist Al pipeline to process the volumetric data

@“ﬁ%Mahmood Lab
SEY Al for Pathology

=)

\



TriPath

TR

Data preprocessing
Raw volume

Al-based Computational processing
Feature encoder

Intermediate features

3D patches

@30 Mahmood Lab
b))
Q’E} Al for Pathology

Al pipelin

Cell

(Cell, 2024)

=)

\

3D patches

Analysis of 3D pathology samples using weakly
supervised Al

Graphical abstract

—

2D pathology
Sectioning & 2D imaging

l Imaging

Whole-slide image

Recurrence
probability
5

Recurrence
probability

~ High risk
— Low risk

Months

Human tissue volume

3D pathology
OTLS microCT
Nondestructive / ' P
imaging — \«a "//'I
,‘O s I
1 Imaging

Volumetric image

Comprehensive
morphology

TriPath
(Al-based prognosis)

-
o

Better risk
Stratification

. = High risk
= Low risk

.0
Months

Authors

Andrew H. Song, Mane Williams,

Drew F.K. Williamson, ..., Anil V. Parwani,
Jonathan T.C. Liu, Faisal Mahmood

Correspondence

jonliu@uw.edu (J.T.C.L.),
faisalmahmood@bwh.harvard.edu (F.M.)

In brief

Patient prognostication based on 3D
pathology yields superior performance to
traditional 2D histopathology due to
vastly improved sampling of
heterogeneous tissues and the ability to
extract 3D morphological features.



Performance
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f.

(Cell, 2024)
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Al-driven 3D Spatial Transcriptomics (?)

Generating the training/validation data ...

Prostate cancer biopsy

l High gene
expression

Low gene
expression

L. 2D-3D registration for microCT - ST alignment
After model training...

microCT
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Al-driven 3D Spatial Transcriptomics (?)

Generating the training/validation data ...

[ Highgene
expression

Low gene
expression

2D-3D registration for microCT — ST alighment

After model training... Limited ST

microCT

....._'/v F
o
o
o

@30 Mahmood Lab
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Q{Z§>AI for Pathology

In Patient
Fine-Tuning




Al-driven 3D Spatial Transcriptomics (?)

Allin-house and Stage I: 2D images and ST
publicly available H&E- > e

ST pairs in prostate >

G i T i
ene expression per ST embedding Contrastive
patch .
alignment
CONCH Predictor % ST prediction

2D morphology embedding

.O'i:\"} Mahmood Lab
@Eﬁ' AT for Pathology



Al-driven 3D Spatial Transcriptomics (?)

&

Mahmood Lab
Al for Pathology

Allin-house and
publicly available H&E- > P
ST pairs in prostate >

Gene expression per
patch

CONCH

viT
ViT
Depth: 44 pm
3D microCT image e
= ViT

3D patch ﬁ

(11 planes ~ 44 pm in depth)

ST embedding

Predictor

2D morphology embedding

Depth attentional
pooler

Stage Il: 3D integration

> ST prediction

Direct alignment

N —

3D morphology
embedding



Al-driven 3D Spatial Transcriptomics (?)

MSMB gene, a prostate cancer marker, is
known to be downregulated in cancerous cells
compared with benign prostate epithelium.

Scrolling up in the Z dimension ...
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Bias is computational pathology datasets

» Common datasets over-

represent patients from certain

demographics

» Real world populations are

=)
5

I

a Training and validation Weakly supervised MIL Independent test

TCGA-breast (n =1,049) MGB-breast (n = 1,265)

22222 I
Asian White ; s
(5.2%) 69.1%) o \/ 0 = White
° ]L f— slan (71.4%)
>3 — —_ — | O — (11.2%)
Black . I Y W a
(16.1%) sl VLY - Black Ml
Nonreporting/ (13.0%) Nonreporting/
other (9.6%) JUIL JL other (4.4%)

diverse

» Are there biases in algorithn
trained for cancer subtyping af
mutation prediction tasks?

(Nature Medicine, 2024)

nature medicine
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Algorithm Fairness in Healthcare and Medicine

Demographic Shift Prevalance Shift Concept Shift
"
== = 7
¢
[ M : * Many healthcare disparities in
[ ® G ) [f y medical Al can be understood as
l - S e arising from dataset shift, e.g.
2008-2018, Post- 2018,
‘ 0, thscora for N thscorne for
borderline TCMR borderline TCMR

Ptrain (X) 7é Ptest (X)
Ptra,in (Y) 7& Ptest (Y)

Resource Shift

L ‘ 2 = =

Acquisition Shift
Prosocol A Peotocol B
Scanner A

\_.

;"/

J | PR

B  Model dowelopment B Model deployment
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Algorithm Fairness in Healthcare and Medicine

Hamamatsu S210
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* Image acquisition shift in H&E pathology images (stain variability) and CT (radiointensity variability)

Chen et al., Algorithmic fairness in artificial intelligence for medicine and healthcare. Nature BME, 2024
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Algorithm Fairness in Healthcare and Medicine

TCGA-LUAD cohort (North America) PIONEER cohort (Asia) Disparities in EGFR mutation
frequency in Asian populations

T TCGA (n =8)
— Overall

PIONEER (n =1,482)

Overall |

Vietnamese
8.2%

NR/other

20.8% Thai

8.0%

Asioan Taiwanese \ \\\ Mandarin |
Black w )
9.2% n =566 n=1,482 | | Indian

Filipino / Filipino

4.5% /

) Taiwanese
Indian

5.5% Thai

Viethamese
White e Mandarin ! T I I
68.6% Cantonese Chinese 0% 25% 50% 75%  100%
11.5% 50.4% EGFR mutation frequency

* The majority of models are trained on datasets that over-represent individuals of European ancestry,
often without the consideration of algorithm fairness

* 82.0% of all cases in the TCGA are from patients with European ancestry — how do Al models behave
when trained on predominantly White patients and tested on under-represented minorities?

P BRIGHAM AND ’J Dana-Farber% BROAD

Chen et al., Algorithmic fairness in artificial intelligence for medicine and healthcare. Nature BME, 2024 ﬂéﬁ&éﬁg 6 WOMEN'S HOSPITAL Cancer Institute INSTITUTE



Demographic Bias in Computational Pathology Al models

Training and validation Weakly supervised MIL Independent test
TCGA-BRCA (n =1,049) MGB-breast (n =1,265)
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Demographic Bias in Computational Pathology Al models
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* Self-supervised pathology encoders (UNI) help mitigate performance disparities
in cancer subtyping and biomarker prediction
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INTELLIGENT MICROSCOPES: A SCIENTIFIC POENb

Judith M. S. Prewitt, Ph. D.

Division of Com

1 979 Natio

This paper, written in the form of a scientific
poem, reviews the current status of automated intel-
ligent microscopes based on computer technology. The
basic concepts of image analysis for cytology and
histology are presented and illustrated. Limitations
of commercial devices and research endeavors are
examined, and remedies are suggested.

1. The Biological Milieu

First it is fundamental to realize

No two of anything may be alike.

That dawn out there that paints those loitering skies
Around St. Ceil’s pale lemon, and tints white
Pilasters on its spire the tastiest lime,

Cannot come up the same another time . . .

L. E. Sissman
String Song
"ving: An Introduction, 1967

Il. Cells

The differential blood cell count’s a test with many
uses,

Not the least of them being the income it produces.

Cervical (Papanicolaou) smears also contain a wealth

Of information about gynecologic status and health.

Urine and sputum cytology and aspiration biopsies too

Are clinical pathology sources for a diagnostic clue,

Laboratories which examine many specimens might
well invest

In instruments which do a more cost-effective test.

B

Optical illusions can deceive the subjective eye,

But objective measurements and algorithms are assumed
not to lie.

It's often said that medicine could use such objectivity,

And thought that this justifies machine intelligence
activitiy.

Artificial intelligence is another current craze

That uses computers to cope with the diagnostic maze,

Though criteria for intelligence have never been re-
solved,

Paper after paper claims the problem has already been
solved.

or dye them.
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