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Outline 
• Weakly Supervised Models for Pathology 

- CLAM  (Nature BME, 2021) 

- Cancers of Unknown Primary (Nature, 2021) 

- Cardiac Allograft Rejection (Nature Medicine, 2022) 

• Multimodal Data Integration 

- Pan-cancer, fusing histology and genomics (Cancer Cell, 2022) 

• Foundation Models 

- Vision centric foundation model (Nature Medicine, 2024) 

- Vision-language foundation model (Nature Medicine, 2024) 

• Generative AI for Pathology 

- PathChat (Nature, 2024) 

• Transitioning from 2D to 3D Pathology 

- TriPath (Cell, 2024) 

• Bias and Fairness 

- Do foundation models reduce model bias? (Nature Medicine, 2024) 



  
 

 

 Problem Formulation 
Slide-Level Task: Given ∼150K × 150K image 
(e.g. – Whole-Slide Image or WSI), predict: 
• Cancer stage / subtype 
• Survival outcome 
• Response-to-treatment 
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CLAM Workflow 

• Weakly supervised learning from 
histology whole slide images. 

• Adapts Attention Based Multiple 
Instance Learning for Computational 
Pathology. 

• Used pre-trained feature encoders 
instead of end-to-end training. 

• Easy to use codebase. 

(Nature Biomedical Engineering, 2021 



Cancers of  Unknown Primar 

Cancers where a primary origin can not be 
determined. 

• 1-2% of  all cancers. 

• 30,270 cases expected to be diagnosed in the U 

• Median survival 2.7-16 months. 

• 2-year survival rate: 20-25% 

• CUP patients undergo a complete workup of 
clinical, radiological, endoscopy, molecular testing 
an attempt to determine origin. 

Can we use H&E whole slides to determi 
origins for cancers of unknown primary? 

(Nature, 2021) 
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 (Nature BME, 2024 – in press) 

Integrating histology + genomics for origin prediction 



 
  

  

 
 

  

  

ar Interpretability
or WSI Interpretability

PORPOISE: Overview (http://pancancancer.mahmoodlab.org) 

Integrated Gradients for Molecul 
Network Architecture Interpretability Strategy 
• Unimodal branch for WSIs using CLAM / ABMIL • 
• Unimodal branch for Mut+CNV+RNA using SNN • Attention Weights + HIF f 
• Multimodal Fusion via Kronecker Product 

Chen et al., Cancer Cell 2022 

http://pancancancer.mahmoodlab.org/


Endomyocardial Biopsy Assessment 

(Nature Medicine, 2022) 



   

     
    

    

  

 

 
  

MIL Frameworks�
For patient j, input: WSI 𝑋𝑗 target: clinical endpoint 𝑌𝑗 

Classification 𝑃 𝑌𝑗 = 𝑘 𝑋𝑗 = 
exp(𝑤𝑘(𝑋𝑗)) 

σ𝑘=1 
𝐾 exp(𝑤𝑘(𝑋𝑗)) 

Problem formulation 

- Lung cancer subtype 𝑌𝑗 = {Lung squamous cell carcinoma, Lung adenocarcinoma} 
- Gene mutation 𝑌𝑗 = {wildtype, mutated} 

(Multinomial) Logistic regression! 

Feature extraction�
𝒛𝑖 

𝑗 
= 𝑓(𝒙𝑖 

𝑗
), for 𝑖 = 1, … , N 

Feature 
aggregation 

𝒛𝑗 = 𝑔({𝒛𝑖 
𝑗 
}𝑖=1 

𝑁 ) 

Prediction 
𝑌𝑗 = ℎ𝑘(𝒛𝑗) 

𝑓: neural network 

𝒛𝑖 
𝑗 

∈ ℝ768 (for ViT) 

Input patching 
𝑗 𝑗 

𝑋𝑗 ⇒ {𝒙1, … , 𝒙𝑁 } 

𝑁 > 10,000 
𝑗 

∈ ℝ256 × 256× 3𝒙𝑖 

𝑔: max / average / NN 



  

  

 

Why do we need foundation models for pathology? 

• Foundation models are generic models capable of 

generally encoding data into meaningful 

representations. 

• Can be applied to many downstream tasks with 

minimal data (rare diseases, clinical trials etc.) 

• Ideal for multi-task, multi-tissue models. 

• Not necessarily meant to completely replace 

supervised, task specific models. 



 

  

UNI 

http://github.com/mahmoodlab/UNI 

CONCH 

http://github.com/mahmoodlab/CONCH 

http://github.com/mahmoodlab/
http://github.com/mahmoodlab/UNI
http://github.com/mahmoodlab/CONCH


  

  

   

 

  

  

UNI: Mass-100K - 100K WSIs for large-scale vision SSL pretraining 

• 100 million patches sampled across 
100,000+ WSIs 

• 380+ unique OncoTree Codes and other 
disease labels 

• WSIs from commonly used benchmarks 
(e.g. TCGA) are not included to avoid 
data leakage in downstream evaluation 

Mass-100K represents the largest and most 
diverse SSL pretraining dataset including 
neoplastic, infectious and inflammatory 
diseases. 

(Nature Medicine, 2024) 



 

 

 

  
 

  

UNI: Pretraining via DINOv2 

• Dino v2 SSL pretraining recipe 
combing masked image modeling 
and self-distillation 

• 4 x 8 A100 GPUs for multi-node 
training of ViT-L on Mass-100K for up 
to 125,000 iterations 

• Compare against SOTA SSL encoders 
+ baseline: 
• CTransPath (Wang et al. 2022) 
• REMEDIS (Azizi et al. 2023) 
• ResNet50 (transfer from 

ImageNet) 

(Nature�Medicine,�2024)�



UNI: Overview of Tasks 

Slide-Level ROI-Level 

Retrieval & Prototyping 

Classification Classification 

UNI outperforms other pretrained encoders on 33 clinical 

(Nature Medicine, 2024) 

  

 

 

  

Segmentation
ROI-Level 

tasks in anatomical pathology. 



  (Nature Medicine, 2024) Weakly-supervised slide-level classification 

Few-shot classification: 



 

 

 

     

OT-43 
+13.8% +12.6% 

UNI: OT-43/108 - A new�large-scale subtyping benchmark� (Nature Medicine, 2024) 

• OncoTree-43 (OT-43): 43-way cancer type 
classification 

• OncoTree-108 (OT-108): 108-way OncoTree 
Code (cancer subtype) classification 

• Challenging, large, representative benchmark 
for assessing performance of SSL pretrained 
encoders 

OT-108 



 

 

 

  
 

  

 
 

  

• 1.1M image-caption pairs for 
histopathology collected from P
pathology textbooks and online-
educational platforms

• Pretrained with CoCa (contrastive loss + 
captioning loss) on 8 A100 GPUs with a b
size of 1,536 

• Transfer to diverse downstream (retrieval 
classification / segmentation 

• Compare with:
• OpenAI CLIP (Radford et al. 2021, 

OpenAI) 
• PLIP (Huang et al. 2023, Stanford)
• BiomedCLIP (Zhang et al. 2023, 

Microsoft)

(Nature Medicine, 2024) CONCH: CONtrastive learning from Captions for 
Histopathology 
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  (Nature�Medicine,�2024)�

Zeroshot classification 
Zero shot classification through 
prompting! 
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CONCH

PLIP

BiomedCLIP

OpenAICLIP

4 Slide-level benchmarks (using MI-Zero): 
- TCGA BRCA subtyping 
- TCGA RCC subtyping 
- TCGA NSCLC subtyping 
- DHMC LUAD pattern classification 

3 Patch-level benchmarks (using CLIP-
style zeroshot): 
- SICAP gleason grading 
- CRC100k tissue type classification 
- WSSS4LUAD tissue type classifcation 



 

    

    

  (Nature Medicine, 2024) 

Fewshot classification 

1. CONCH zeroshot is a strong baseline for classification, competitive with supervised few-shot learning by SOTA 

TCGA NSCLC Subtyping 

visual language encoders. 
2. CONCH image encoder is more label efficient and often requires few labels to reach competitive performance 



 
 

Downloaded over 
400k times on 
HuggingFace. 



       

 

 
 

     

UNI and CONCH External Validation: Biomarker Assessment and FM Comparisons 

• CONCH and UNI continues 
to be the top-2 SOTA ROI 
foundation models across 
31 clinical tasks spanning 
morphological subtyping, 
biomarker prediction, and 
cancer prognosis 

Neidlinger et al., Benchmarking foundation models as feature extractors for weakly-supervised computational pathology. arXiv, 2024. 



     

 

 

 

    

UNI and CONCH External Validation: Performance Efficiency Assessment 

• UNI continues to be 
the SOTA ROI MSKCC NSCLC IO Prediction AUC Performance vs. Parameter Efficiency 

foundation model on 9 
disease detection and 
11 biomarker 
prediction tasks. 

• Diminishing 
performance gains 
found with larger 
models. 

• UNI performance on 
NSCLC IO is attributed 
to training diversity 

Campanella et al., A Clinical Benchmark of Public Self-Supervised Pathology Foundation Models. arXiv, 2024. 



* Includes IO and CPU-GPU comm * Excludes IO and CPU-GPU comm 

  
     

  

  

 

  

   

UNI and CONCH 
Slide Feature Extraction Speed Patch Feature Extraction Speed Storage Cost Extraction Time Cost 

• Non-overlapping [256 x 256] patch feature 
extraction from 11,661 WSIs in the TCGA 

• Approx. 13,353 tissue patches per WSI (155.7M 
tissue patches in total) 

• A100 80GB SXM4 with PanFS HPC Storage 

• 32-class ROI-level pan-cancer tissue retrieval 
evaluation in the TCGA 

Pan-Cancer TCGA Slide Retrieval Performance 



Slide level SSL 

(Unpublished)�



     

 

  

  

 

SlideSSL: A Vision-Language Slide Foundation Model for CPath 
CONCHWSI CONCHROI 

Morphological Subtyping IHC Quantification 

EBRAINS-30 OncoTree- OncoTree-108 ER Quant. PR Quant. 
(HBA) 46 (Ext.) (Ext.) (Ext.) 

(TCGA) • A vision-language foundation model that Biomarker Prediction 
scales the capabilities of CONCH to the 
whole slide level 

• Over 400K WSIs paired with synthetic 
pathology reports created by PathChat 

• No weakly-supervised MIL needed in 
directly extracting powerful slide features ER PR HER2 CRC MSI CRC BRAF CRC KRAS 

(BCNB) (BCNB) (BCNB) (TCGA) (TCGA) (TCGA) 



ABMIL CONCHROI 

        

     
     

  
 

SlideSSL: Few-Shot Performance and Human Pathology Atlas Development 
CONCHWSI Mean CONCHROI 

• CONCHWSI is the only slide foundation model that can 
outperform MIL and mean pooling baselines 

• Save cost on embedding stores by saving slide 
features (instead of patch features) 



SlideSSL: Zero-Shot Slide Classification and Report Generation       



MADELINE: Contrasting HE with IHCs, Special Stains 

 (ECCV, 2024) 



 

 

TANGLE: A Slide-Level Foundation Model with H&E + Transcriptomics 

(CVPR, 2024) 



 THREADS: A contrastive foundation model with Histology + Genomics 

(Unpublished) 



(Unpublished) 



Treatment Response Tasks using THREADS 

(Unpublished) 



 

 

 

Generative AI for Pathology 

What do we need to build a universal 
multimodal chatbot for anatomic 
pathology? 

• A visual centric pathology 
foundation model. 

• A vision-language foundation 
model. 

• A large instruction dataset using 
with pathology images, questions 
and responses. 

• Robust evaluation. 
(Nature, 2024) 





  

 

 
  

 

 

Fine grained understanding of pathology 
regions at the cellular leads to slide level and 
patient level descriptions. 

Pathology reports are at the level of the slide 
or patient  and don’t have fine grained�
morphologic details. 

We need fine grained morphologic details at 
the level of cellular organization and tissue 
phenotypes to have a close relation between 
text-image pairs which can be used to train 
PathChat. 



(Nature, 2024) 

Building PathChat 
 









 (Nature, 2024) 



 (Nature,�2024)�



 

 

 
  
  
  

AI Agent for Computational Pathology - Preview 

• AI agents do things for you! 
• What if AI agents could do all biomedical data analysis for you? 
• What if an AI agent could develop, assess, and explain AI models for pathology? 
• What if an AI agent could write code, run experiments and test hypothesis?  
• What if an AI agent could continuously run in the background attempting to find
common morphologic features across patient cohorts and correlate with 
outcome? 

(Unpublished) 



(Unpublished) (U
npublished) 



(U
npublished) 



(U
npublished) 



   

   

  

   

  

   

   

 
    

 

Motivation Transitioning from 2D to 3D pathology 

Human tissue is�inherently 3D�
=> Current clinical practice - microscopic analysis of thinly-sliced 2D tissue section 

Active development of 3D tissue imaging modality 

CODA – serial sectioning & registration Microcomputed tomography Open-top light-sheet microscopy 
(microCT) (OTLS) 

Kieman A. et al., Nature Methods, 2022 Glaser K. et al., Nature Methods, 2022 

Whole volume  > Portion of volume 
► Infeasible for pathologists to manually examine 3D data 

► There does not exist AI pipeline to process the volumetric data 



 

 

  

 

(Cell, 2024) Whole-block AI-based computational pipeline 

Data preprocessing 

AI-based Computational processing 

AI pipeline 



(Cell, 2024) Performance 

a.� b. c. 

d. e. f. 



Morphology analysis (OTLS) (Cell, 2024)(Cell, 2024) 



 
    

 

    

  

 

AI-driven 3D Spatial Transcriptomics (?) 

Prostate cancer biopsy 

microCT 

Volumetric image Sectioning, H&E staining & Spatial Transcriptomics 

~ 250 μm 

Low gene 
expression 

High gene 
expression 

Generating the training/validation data …�

2D-3D registration for microCT – ST alignment 
After model training…�

microCT 



AI-driven 3D Spatial Transcriptomics (?) 

Generating the training/validation data …�

 
    

 

    

  

 

Prostate cancer biopsy 

microCT�

Volumetric image Sectioning, H&E staining & Spatial Transcriptomics 

~ 250 μm 

Low gene 
expression 

High gene 
expression 

2D-3D registration for microCT – ST alignment 
After model training…�

Limited ST 

microCT�

In Patient 
Fine-Tuning 



    

 

 

human tissue

AI-driven 3D Spatial Transcriptomics (?) 

All in-house and Stage I: 2D images and ST 
publicly available H&E-

ST pairs in prostate 

Gene expression per ST embedding 
Contrastive patch 
alignment 

ST prediction 

2D patch 2D morphology embedding 

CONCH 

MLP 

Predictor 



AI-driven 3D Spatial Transcriptomics (?) 

All in-house and 

MLP 

Stage II: 3D integration�
publicly available H&E-

ST pairs in prostate 

Gene expression per ST embedding 
patch 

CONCH ST prediction Predictor 

2D patch 2D morphology embedding 
Direct alignment 

Depth: 0 μm 

ViT 

3D microCT image 

ViT 
Depth attentional 

pooler 

…
…

 

Depth: 22 μm 

  

 

 

  

 

 

 

 

  

     

 

 

human tissue

3D morphology 

3D patch 

(11 planes ~ 44 μm in depth) 

ViT 

Depth: 44 μm 
embedding 



 

AI-driven 3D Spatial Transcriptomics (?) 

MSMB gene, a prostate cancer marker, is 
known to be downregulated in cancerous cells 
compared with benign prostate epithelium. 

Scrolling up in the Z dimension … 



 

 

 

 s 

Bias is computational pathology datasets 

Common datasets over-
represent patients from certain 
demographics 

diverse 
Real world populations are 

Are there biases in algorithm 
trained for cancer subtyping and 
mutation prediction tasks? 

(Nature Medicine, 2024) 



     

 

 

 
 

       

Algorithm Fairness in Healthcare and Medicine 

Demographic Shift Prevalance Shift Concept Shift 

• Many healthcare disparities in 
medical AI can be understood as 
arising from dataset shift, e.g. 

Acquisition Shift Open Set Label Shift Resource Shift 

Chen et al., Algorithmic fairness in artificial intelligence for medicine and healthcare. Nature BME, 2024 



     

 

       

  

Algorithm Fairness in Healthcare and Medicine 

• Image acquisition shift in H&E pathology images (stain variability) and CT (radiointensity variability) 

Chen et al., Algorithmic fairness in artificial intelligence for medicine and healthcare. Nature BME, 2024 



     

   
 

  
  

       

Algorithm Fairness in Healthcare and Medicine 

• The majority of models are trained on datasets that over-represent individuals of European ancestry, 
often without the consideration of algorithm fairness 

• 82.0% of all cases in the TCGA are from patients with European ancestry – how do AI models behave 
when trained on predominantly White patients and tested on under-represented minorities? 

Chen et al., Algorithmic fairness in artificial intelligence for medicine and healthcare. Nature BME, 2024 



Demographic Bias in Computational Pathology AI models     

    Vaidya et al., Demographic bias in misdiagnosis by computational pathology models. Nature Medicine, 2024 



Demographic Bias in Computational Pathology AI models     

 
 

     

• Self-supervised pathology encoders (UNI) help mitigate performance disparities 
in cancer subtyping and biomarker prediction 

Vaidya et al., Demographic bias in misdiagnosis by computational pathology models. Nature Medicine, 2024 
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