Individuals using assistive technology may not be able to fully access the information contained in this file. For assistance, please call 800-835-4709 or 240-402-8010, extension 1. CBER Consumer Affairs Branch or send an e-mail to: occd@fda.hhs.gov and include 508 Accommodation and the title of the document in the subject line of your e-mail.

Review of Investigational RSV (mRNA-1345) and RSV/hMPV (mRNA-1365) Vaccines in Infants and Children < 2 Years

- Moderna, Inc.
- December 12, 2024
- Vaccines and Related Biological Products Advisory Committee

Introduction

Christine Shaw, PhD

Vice President, Portfolio Head, Infectious Disease Vaccines Moderna, Inc.

Background for Today's Presentation

- Moderna's RSV vaccine (mRESVIA) is licensed for use in adults ≥60 years of age
 - Safety and efficacy demonstrated in global study of >36,000 adults; RSV hospitalizations only in placebo recipients¹
- Pediatric program pursued to address significant unmet medical need
 - Conservative, step-wise approach to age de-escalation
 - Developed in consultation with regulatory agencies and following established guidance
- Recent Phase 1 trial identified potential imbalance of severe/hospitalized RSV in RSV-naïve infants 5-7 months of age
 - Occurred more frequently in vaccine vs placebo recipients
- Dosing in this study paused in July 2024 based on predefined protocol criteria
 - No subsequent enrollment or dosing; surveillance continues
 - No plan to continue RSV vaccine program in children under 2 years

Goal: Share available data to help inform pediatric RSV vaccine development and guidance

1. ACIP Feb 2024

Agenda

Introduction/Background

Nonclinical Data

Christine Shaw, PhD

VP Portfolio Head, Infectious Disease Vaccines Moderna

Clinical Data

Summary

Matthew Snape, MBBS MD

VP, Pediatric and Maternal Vaccines Moderna

Respiratory Syncytial Virus (RSV) Remains a Key Unmet Medical Need in Young Children in the United States

Children <5 Years

CO-5

- The leading cause of infant hospitalization
 - ~300 deaths¹
 - ~80,000 hospitalizations²
 - ~2.1 million outpatient visits²
- Nearly every child infected by age 2³
- Vaccination remains important tool in preventing RSV in children⁴
 - Maternal RSV vaccination
 - RSV monoclonal Ab for infants
- Medical need remains for RSV prevention through active immunization⁵

1. Hansen, CL et al, 2022; 2. CDC RSV Research & Surveillance; 3. www.cdc.gov/rsv/infants-young-children/index.html; 4. Immunizations to Protect Infants, CDC; 5. Mejias A, et al, 2024

Human Metapneumovirus (hMPV), Related to RSV, is Another Key Unmet Medical Need in the United States

Children <5 Years Significant respiratory disease burden¹: $\sim 20,000$ hospitalizations > 260,000 ED visits ~ 1 million outpatient visits hMPV circulation overlaps with RSV, but begins later (winter through spring)⁴ 3rd most common cause of community-acquired pneumonia^{3,4} Most children infected by age 5⁵ No specific antiviral therapy or vaccine available⁶

CO-6

1. Edwards, KM et al, 2013; 2. Davis, CR et al, JPIDS, 2015; 3. Yun, KW et al, PIDJ, 2022; 4. Jain et al, 2015; 5. Kahn, JS 2006; 6. About Human Metapneumovirus, CDC

History of Enhanced Respiratory Disease (ERD) in Pediatric RSV Vaccine Development

FI-RSV Associated ERD	 Formalin-Inactivated RSV (FI-RSV) vaccine studied in 1960s resulted in ERD in RSV-naive infants after subsequent natural RSV infection 80% hospitalized, 2 died¹ Contributing humoral and cellular factors likely included²: Low neutralizing antibody levels; Induction of non-neutralizing, binding antibody and immune complex-mediated complement activation in airways High Th2 cytokine response resulting in airway inflammation
Risk of ERD	 RSV-experienced children and adults are not considered at risk: Repeat RSV infection does not cause ERD No vaccine-associated ERD reported in RSV-experienced persons
RSV Exposure	 RSV-naïve infant risk is dependent on vaccine type: Live-attenuated virus and mRNA vaccines were considered low risk because of similarities with the virus

1. Kim et al, Am J Epidem, 1969; 2. Acosta et al, Clin Vaccine Immunol, 2015

Investigational Pediatric RSV (mRNA-1345) and RSV/hMPV (mRNA-1365) Vaccines

RSV F mRNA: Encodes the membrane-anchored RSV fusion (F) protein stabilized in the prefusion conformation

hMPV F mRNA: Encodes the membrane-anchored native hMPV F protein

- mRESVIA is licensed for prevention of RSV in persons ≥60 years; no ERD
- Same mRNA platform authorized or licensed for prevention of COVID-19 in persons ≥ 6 months; no ERD
 - >1 million doses have been administered to children <5 years (as of Oct 2023)</p>

mRNA RSV and RSV/hMPV Vaccines Encode the RSV F Protein Stabilized in the Prefusion Conformation

- RSV F protein is conserved across RSV-A and RSV-B subtypes
- F protein exists in 2 primary conformational states: prefusion (preF) and postfusion (postF)
- PreF is the primary target of neutralizing antibody response following RSV exposure
- PreF displays all the epitopes known to elicit neutralizing antibody

FI-RSV displays only postF; inactivating process of heat and formalin destroys preF epitopes

Postfusion RSV F

Moderna's Pediatric RSV (hMPV) Vaccine Development Program Followed Conservative, Stepwise Approach

WHO, FDA, and EMA¹⁻³

RSV Vaccine Development Guidance

Developed to Ensure Safety Driven by ERD in RSV-naïve infants administered FI-RSV vaccine

Nonclinical Data Requirements

Discriminate properties of vaccine candidate from FI-RSV

Stepwise Clinical Approach

Adults and RSV-experienced children before RSV-naïve infants

- RSV pediatric vaccine development aligned with established guidelines¹⁻³
 - Strict compliance with safety and efficacy standards
- No hMPV-specific vaccine guidance
 - No clinical precedent of ERD
 - Moderna applied same conservative approach to hMPV pediatric vaccine development

^{1.} EMA: Guideline on respiratory syncytial virus (RSV)

^{2.} FDA: Respiratory Syncytial Virus Infection: Developing Antiviral Drugs for Prophylaxis and Treatment Guidance for Industry | FDA3,

^{3.} WHO: Guidelines on the quality, safety and efficacy of respiratory syncytial virus vaccines, Annex 2, TRS No 1024

Nonclinical Data

Nonclinical Testing Requirements for RSV Candidate Vaccines Prior to Evaluation in RSV-naïve Infants¹

- ✓ Evaluate candidate vaccine in \geq 1 nonclinical animal model
- ✓ Induce RSV neutralizing antibodies
- ✓ Avoid induction of excess non-neutralizing antibodies
- ✓ Avoid Th2-biased response
- ✓ Induce CD8 T cells
- ✓ Avoid lung inflammation (alveolitis) after a live RSV challenge

This profile will ensure aspects of the FI-RSV immune response that may have led to ERD in RSV-naïve infants are not present in new candidate RSV vaccine

¹ WHO: Guidelines on the quality, safety and efficacy of respiratory syncytial virus vaccines https://www.who.int/publications/m/item/respiratory-syncytial-virus-vaccines-annex-2-trs-no-1024

RSV and RSV/hMPV mRNA Vaccines Induce RSV Neutralizing Antibody without Excess Non-neutralizing Antibody in Mice 3-Dose Regimen

- RSV and RSV/hMPV mRNA vaccines induce RSV neutralizing and binding antibody
- FI-RSV induces non-neutralizing antibody against postF only

RSV and RSV/hMPV mRNA Vaccines Induce Th1 CD4 and CD8 T Cell Responses Against RSV in Mice 3-Dose Regimen

- RSV and RSV/hMPV mRNA vaccines induce Th1-biased (IFNγ > IL-5) CD4 and CD8 T cell responses
- FI-RSV induces a Th2-biased (IL5 > IFNγ) CD4 T cell response; no CD8 T cell response

RSV mRNA Vaccine Evaluated in Cotton Rat RSV Challenge Model Following WHO Guidance¹

a. Additional negative controls included PBS (phosphate buffered saline) and formalin-inactivated mock (FI-mock) to assess roll of cell culture antigen; each were dosed on Days 0 and 28; i.n. – intranasal; all other doses intramuscular 1. https://pubmed.ncbi.nlm.hih.gov/4305198/

RSV Vaccine Induces RSV Neutralizing and PreF-biased Antibody without Excess Non-neutralizing Antibody in Cotton Rats

CO-16

RSV mRNA vaccine induces dose-dependent RSV neutralizing and preF antibody response

FI-RSV induces antibody to postF only; weak/no neutralizing activity

* Single RSV vaccine (mRNA-1345) injection

RSV mRNA Vaccine Protects Cotton Rats from RSV Challenge without Induction of Th2 Response

RSV mRNA vaccine provides dose-dependent protection from RSV challenge without lung IL-4

FI-RSV provides partial protection from RSV challenge with associated lung IL-4

* Single RSV vaccine (mRNA-1345) injection

RSV mRNA Vaccine Does Not Induce ERD in Cotton Rat RSV Challenge Model

CO-18

- RSV mRNA vaccine does not promote enhanced lung inflammation after RSV challenge no ERD
- FI-RSV promotes enhanced lung inflammation after RSV challenge ERD
- * Single RSV vaccine (mRNA-1345) injection

Cumulative lung inflammation equals sum of individual alveolitis, interstitial pneumonia, peribronchiolitis, and perivasculitis histopathology scores

Summary – <u>RSV mRNA</u> Vaccines Induce Protective Immune Response Without RSV ERD in Nonclinical Animal Models

Mice and Cotton Rat Models

FI-RSV	RSV mRNA	
×		Induces neutralizing antibodies
×		Avoids induction of excess non-neutralizing antibodies
×	\checkmark	Avoids Th2-biased response
×	\checkmark	Induces CD8 T cells
×		Avoids lung inflammation (alveolitis) after virus challenge

- mRNA vaccine profile is distinct from FI-RSV profile
- Supported clinical evaluation of the mRNA vaccines in RSV-naïve infants

CO-20 Summary – <u>RSV and hMPV mRNA</u> Vaccines Induce Protective Immune Response Without RSV or hMPV ERD in Nonclinical Animal Models Mice and Cotton Rat Models

FI-RSV; RSV hMPV mRNA **mRNA** FI-hMPV \checkmark X Induces neutralizing antibodies \checkmark \checkmark Avoids induction of excess non-neutralizing antibodies X \checkmark \checkmark Avoids Th2-biased response X Induces CD8 T cells X Avoids lung inflammation (alveolitis) after virus challenge \checkmark X

- mRNA vaccine profile is distinct from FI-RSV and FI-hMPV profile
- Supported clinical evaluation of the mRNA vaccines in RSV- and hMPV-naive infants

Clinical Data

Matthew Snape, MBBS MD Vice President, Pediatric and Maternal Vaccines Moderna, Inc.

Positive Results in Adults and Seropositive Children Allowed Further Age De-escalation Per Regulatory Guidelines

Vaccine	Age	Serostatus	Neutralizing Antibody Induced	No Safety Concerns Including ERD
RSV (mRNA-1345)	Adults and 1 - 4 years	RSV Seropositive ¹	RSV	
hMPV/PIV3 (mRNA-1653)	Adults and 1 - 4 years	hMPV/PIV3 Seropositive ²	✓ hMPV	

Study Design and Methods Study 101

Age De-Escalation Study in Infants and Children, 5-23 Months, Developed in Consultation with Regulatory Agencies

Part A (8-23 Months)

Cohort 1 RSV Vaccine 30 µg : Placebo (2:1) Cohort 2 RSV/hMPV Vaccine 30 µg : Placebo (2:1)

Part C (8-11 Months)

Cohort 7 exposed to Nirsevimab RSV Vaccine 30 µg Cohort 8 not exposed to Nirsevimab RSV Vaccine 30 µg

- Healthy participants with gestational age \geq 37 weeks and birthweight > 2.5 kg
- 3-dose intramuscular regimen Day 1, Month 2, Month 4 with 24-month follow-up

DSMB – Data Safety Monitoring Board

Key Primary and Secondary Study Objectives

Primary Objectives

 Evaluate the safety & reactogenicity of study injections

Secondary Objectives

Safety

 Evaluate the occurrence of clinical RSV or hMPV infections

Immunogenicity

- Evaluate the antibody response
- Characterize cellular immunogenicity in a subset of participants

Extensive Active RSV and hMPV Surveillance Over Study Duration

E-Diary used by parents to report

- New occurrence OR worsening of RTI symptoms (cough, runny nose, blocked nose)
- During RSV & hMPV seasons, parents received weekly prompts to complete e-Diary

If parent reported RTI symptoms

- Site followed up within 1 working day and scheduled assessment visit within 5 days of RTI symptom onset
- RT-PCR nasal swab collected for local and central laboratory testing

■ Dosing pause rule to be triggered if ≥2 severe RSV or hMPV LRTI cases reported

Protocol Definitions of RSV or hMPV-related Respiratory Tract Illness/Lower Respiratory Tract Illness (RTI/LRTI)

Severe/hospitalized RSV or hMPV Disease subsequently defined as a combination of any per-protocol severe LRTI, very severe RSV LRTI, or RSV hospitalization

SpO2 – Oxygen saturation; RR – respiratory rate

Study Overseen by Independent Data Safety Monitoring Board (DSMB)

Unblinded Data Review at Prespecified Intervals				
Oversight of Study	Reactogenicity and Safety Data	Incidence of Severe RSV/hMPV Cases	<i>Ad hoc M</i> eetings in Case of Safety Events	
\checkmark	\checkmark	\checkmark	\checkmark	

- Independent group of RSV experts
- Prespecified Intervals for Data Review
 - Initiation of age de-escalation
 - Initiation of dose escalation
 - Monthly review of data after initiation of 5-7-month-old cohort

Determination of Baseline RSV Serostatus

Study 101

Determination of Serostatus for RSV Naïve vs RSV Experienced Based on PostF IgG Binding Assay

	Part A (8-23 Months) & Part C (8-11 Months)		Part B 5-7 Months	
	RSV-Naïve	RSV- Experienced	RSV-Naïve	RSV- Experienced
PostF IgG Baseline Cutoff (AU/mL)	< 200	≥ 200	< 1800	≥ 1800

CO-30

PostF binding antibody at baseline chosen to determine RSV experienced vs naïve

- Minimal impact by Nirsevimab presence, therefore applicable to Part C
- Presence of maternal antibody in youngest children required higher antibody cutoff

Study Results Study 101, Part A (8-23 Months of Age)

Part A: 8-23 Months – Enrollment and RSV Status

Part A (8-23 Months)	
Cohort 1 RSV Vaccine 30 µg : Placebo (2:1)	

Cohort 2 RSV/hMPV Vaccine 30 µg : Placebo (2:1)

- 85 of 90 received all 3 Doses

RSV Serostatus			
Total Participants90			
RSV Naïve	36/85 (42.4%)		
RSV Experienced	49/85 (57.6%)		
Unknown	5		

RSV Neutralizing Antibody (nAb) Responses Demonstrated in Both RSV Naïve and Experienced 8-23 Month Olds Part A

Day 1 vaccination elicited RSV nAb in RSV experienced participants

nAb titers further increased after Dose 2 in RSV naive participants

RSV-Experienced = PostF IgG ≥ 200 AU/mI at baseline. RSV-Naïve = PostF IgG < 200 AU/mI at baseline

PreF Biased Binding IgG Response, Especially in RSV Naïve Infants Part A, 8-23 Months

PreF/PostF Ratio (Day 141)	Placebo	RSV Vaccine	RSV/hMPV Vaccine
RSV-Naïve	0.8	22.6	16.6
RSV-Experienced	1.7	2.1	2.0

Th1 Biased RSV-F Specific Cellular Response in 12-23 Month Olds (Part A Subset)

CO-36 No Severe/Hospitalized RSV Cases in 8-23 Month Olds After First RSV Season (DSMB Review, March 2024)

Part A (3 doses, 30 µg)

	RSV Vaccine	RSV/ hMPV Vaccine	Combined	Placebo
Total Participants	29	30	59	31
Symptomatic RSV	5 (17.2%)	4 (13.3%)	9 (15.3%)	8 (25.8%)
Severe/Hospitalized RSV	0	0	0	0

Safety and Immunogenicity Data from 8-23 Month Olds Supported Further Age De-escalation Part A

CO-37

Study Results

- ✓ No safety concerns identified during entire RSV 2023/2024 season
- No severe / hospitalized RSV cases up to March 2024
- Robust neutralizing antibody responses against RSV-A & RSV-B
- ✓ Binding antibody response preferentially directed against RSV PreF
- Cell-mediated immunity induced (primarily Th1)

- Clinical results similar to nonclinical data in which no evidence of ERD was found
- Support age de-escalation according to WHO guidelines

After Careful Review of Data, DSMB Supported Age De-escalation to 5-7 Month Olds on March 28, 2024

Data Reviewed on 8-23 Month Olds Prior to Enrollment of 5-7 Month Olds

Safety data after complete RSV season in Panama & US	Unblinded review of RSV and hMPV infections	Immunogenicity data	

Ongoing Surveillance (up to October 15, 2024) Study 101, Part A (8-23 Months of Age)

Only One Case of Severe/Hospitalized RSV Disease in RSV Naïve 8-23 Month Olds

Cohorts 1 & 2 (3 doses, 30 µg)

		RSV Vaccine	RSV/ hMPV Vaccine	Combined	Placebo
	Total Participants	29	30	59	31
RSV-	RSV-Naïve Participants	14	9	23	13
Naïve	Symptomatic RSV	6 (42.9%)	6 (66.7%)	12 (52.2%)	8 (61.5%)
(N = 36)	Severe/Hospitalized RSV	0	1 (11.1%) ¹	1 (4.3%) ¹	0
PSV.	RSV-Experienced Participants	13	19	32	17
Experienced	Symptomatic RSV	5 (38.5%)	7 (36.8%)	12 (37.5%)	6 (35.3%)
(N = 49)	Severe/Hospitalized RSV	0	0	0	0

- Single case of hospitalized RSV LRTI, occurring in vaccine recipient in August 2024, after decision to age de-escalate to 5 – 7-month-old infants
- No severe/hospitalized cases in RSV experienced 8 to 23 months old children

RSV-Experienced = PostF IgG ≥ 200 AU/ml at baseline. RSV-Naïve = PostF IgG < 200 AU/ml at baseline. 1. Co-infection with Human Rhinovirus/ Enterovirus. Data cut-off 15 October 2024. Five participants did not have baseline postF values therefore the baseline serostatus is unknown. None of these participants had a symptomatic RSV infection.

Study Results Study 101, Part B (5-7 Months of Age)

Part B: 5-7 Months - Enrollment and Dosing

- Participants born end 2023 RSV season and enrolled before 2024 RSV season
- Dosing pause followed report of 2 RSV severe LRTI cases in Part B

Immunogenicity Evaluation Part B (5-7 Months of Age)

Two Doses of RSV or RSV/hMPV Vaccine Induced RSV Neutralizing Antibody (nAb) in 5-7 Month Olds

Cohorts 3 & 4 (2 doses, 15 µg)*

RSV-Experienced = PostF IgG ≥ 1800 AU/mI at baseline

RSV-Naïve = PostF IgG < 1800 AU/ml at baseline

* immunogenicity data for cohorts 5 & 6 (1 x 30 µg) not available; 15 ug for RSV vaccine; 7.5 ug of each component in RSV/hMPV vaccine

RSV Status of Participants

Total Participants	60
RSV Naive	53 (88.3%)
RSV Experienced	7 (11.7%)

RSV A Neutralizing Antibody Rise Following RSV Vaccine Comparable to Natural Infection

Cohorts 3 & 4 (2 doses, 15 µg)

Increase in RSV A neutralizing antibody seen for almost all vaccinated participants

Induced by vaccines, independent of infection

Two Doses of RSV or RSV/hMPV Vaccines Increased RSV F Binding IgG with a PreF Bias in 5-7 Month Olds Cohorts 3 & 4 (2 doses, 15 µg)

	Placebo	RSV Vaccine	RSV/ hMPV Vaccine
Day 85 Pre/PostF Ratio (95% CI)	0.8 (0.5, 1.2)	17.0 (9.6, 30.2)	12.8 (8.0, 20.7)

Respiratory Infection Surveillance Study 101, Part B (5-7 Months of Age)

Multiple Activities After Dosing Pause Initiated July 17, 2024 Following 2 Severe RSV-LRTI in 5-7 Month Olds

CO-48

JUL 17 – Pause Role Invoked by Moderna

- FDA and DSMB notified
- All enrollment and vaccination stopped

More Severe/Hospitalized RSV Cases Seen in RSV Naïve Vaccine Recipients 5-7 Months Old

Cohorts 3 & 4 (2 doses, 15 µg)

		RSV vaccine	RSV/ hMPV vaccine	Combined	Placebo
	Total Participants	20	20	40	20
RSV- Naïve (N=53)	RSV-Naïve Participants	18	17	35	18
	Symptomatic RSV	8 (44%)	8 (47%)	16 (46%)	12 (67%)
	Severe/Hospitalized RSV	2 (11%)	3 (18%) ¹	5 (14%) ¹	1 (6%)²
RSV- Experienced (N=7)	RSV-Experienced Participants	2	3	5	2
	Symptomatic RSV	0	1 (33%)	1 (20%)	0
	Severe/Hospitalized RSV	0	0	0	0

Trend towards lower symptomatic RSV infections in vaccine vs placebo recipients

- More severe/hospitalized RSV cases among vaccine recipients than placebo recipients
- Severe/clinically significant cases only observed in RSV naive participants

RSV-Experienced = PostF IgG ≥ 1800 AU/ml at baseline. RSV-Naïve = PostF IgG < 1800 AU/ml at baseline. 1. One participants with SARS-CoV-2 co-infection 2. One participant with hMPV Co-infection. Data cut-off 15 October 2024.

Characteristics of 6 Severe/Hospitalized RSV Cases Among Vaccine/Placebo Recipients 5-7 Months Old Cohorts 3 & 4 (2 doses, 15 µg)

Vaccine /Placebo	Onset	Site of Care	Care	Coinfection(s)	Resolution
RSV/hMPV	10 Days Post Dose 2	Hospitalized 16 days, 10 in ICU	Mechanical Ventilation (7 days)	None	Arterial Hypertension Persists
RSV/hMPV	26 Days Post Dose 2	Hospitalized 4 days, non-ICU	O ₂	SARS-CoV2	Resolved
RSV/hMPV	23 Days Post Dose 1	Hospitalized 4 days, non ICU	0 ₂	None	Resolved
RSV	14 Days Post Dose 2	Hospitalized 4 days, non-ICU	None	None	Resolved
RSV	3 Days Post Dose 2	ER	0 ₂	None	Resolved
Placebo	37 Days Post Dose 2	Hospitalized 5 days, non-ICU	O ₂	hMPV	Resolved

High Neutralizing Antibody Titers In Participants Who Received 2 Doses and Developed Severe/Hospitalized RSV

A Severe/Hospitalized RSV Disease

No Severe/Hospitalized RSV Disease in 5-7 Month Olds after One 30 µg Dose

CO-52

Cohorts 5 & 6 (1 dose, 30 µg)

	RSV Vaccine	RSV/ hMPV Vaccine	Combined	Placebo
Total Participants	7	7	14	7
Symptomatic RSV	4 (57.1%)	1 (14.3%)	5 (35.7%)	4 (57.1%)
Severe/Hospitalized RSV	0	0	0	0

hMPV Infections

Several Severe/Hospitalized hMPV Infections in 5-7 Month Olds Following RSV/hMPV Vaccine

Cohort 4 (2 doses, 15 µg) and Cohort 6 (1 dose, 30 µg) (Total N=27)

Clinical Data	 3 children in Panama hospitalized with hMPV infection, Sept-Dec 2024 2 received two 15 µg doses; 1 received one 30 µg dose Onset: 69 & 100 days after dose 2 161 days after dose 1 1 on CPAP for 48 hours 2 managed with supplemental oxygen alone Discharged days 4-9 after admission Investigation of these events is ongoing
Immunogenicity Data	Pending for 5-7-month-olds

RSV Vaccination Following Nirsevimab Study 101, Part C (8-11 Months of Age)

Passive Immunity with Nirsevimab vs Active RSV Vaccine

- Nirsevimab is standard of care for passive protection against RSV¹
 - Recommended for US infants <8 months of age born during or entering first RSV season
- Important to understand how nirsevimab might impact response to active immunization with RSV vaccine
- Non-clinical data suggest inhibition of RSV vaccine antibody response by prior administration of monoclonal antibody
 - Able to be overcome by subsequent vaccine doses

Enrollment and Dosing in 8-11 Month Olds Exposed/Not Exposed to Nirsevimab Part C

Part A (8-23 Months): Panama N= 65, US N= 25

DSMB Review

Part B (5-7 Months): Panama N=80; UK N=1

USA N = 15 9 Nirsevimab exposed 6 Nirsevimab not exposed

Part C (8-11 Months)

Cohort 7 (N ~50) exposed to Nirsevimab RSV Vaccine 30 µg **Cohort 8** (N ~50) not exposed to Nirsevimab RSV Vaccine 30 µg

Intent to administer 3 doses of RSV vaccine, 30 µg

- 15 received single dose prior to dosing pause
- No symptomatic RSV cases reported

No Increase in RSV Neutralizing Antibody in 8-11 Month Olds Following 1 Dose of RSV Vaccine After Nirsevimab

* Nirsevimab administered 6-9 months prior to vaccine, mean 7.4 months

Summary: 5-7 Month Olds Receiving mRNA RSV Vaccine After Nirsevimab

- Based on small number of infants receiving prior nirsevimab:
 - No increase observed in neutralizing antibody after 1 dose of RSV vaccine
 - Suggests potential inhibition by pre-existing monoclonal antibody
 - Potential to overcome this with subsequent doses could not be evaluated given dosing pause

Summary

SUMMARY – Vaccination of Children & Infants with mRNA RSV and RSV/hMPV Vaccines (1 of 2)

<section-header><section-header><section-header></section-header></section-header></section-header>	 Active vaccination against RSV for children remains an urgent unmet need to provide protection beyond infancy Moderna pursued a pediatric development plan with its mRNA RSV vaccines based on proven efficacy of its mRNA vaccines to prevent: RSV disease in older adults SARS-CoV-2 disease in children and adults Pediatric RSV development program progressed to RSV-naïve infants in accordance with regulatory guidelines
Immunogenicity	 RSV naïve infants showed robust neutralizing antibodies with Pre-F bias No increase in RSV antibody following initial dose of mRNA RSV vaccine in infants that had previously received nirsevimab

SUMMARY – Vaccination of Children & Infants with mRNA RSV Vaccines (2 of 2)

THANK YOU

- All investigators
- Study site personnel
- The children and families who participated in these trials