

In Vitro Release Test (IVRT) for In Situ Gel/Depot-Forming Drug Products

Agm (Abu) Mostofa, Ph.D.

Staff Fellow, Division of Bioequivalence I
Office of Bioequivalence, Office of Generic Drugs
CDER | U.S. FDA

Advancing Generic Drug Development 2024: Translating Science to Approval

September 24, 2024

Learning Objectives

- Related to IVRT study for in situ gel/depot-forming drug products:
 - Identify challenges in IVRT method development
 - Explain key considerations in IVRT method development and validation
 - Describe submission contents for an IVRT study

In Situ Gel/Depot-Forming Drug Products

☐ In situ gel/depot-forming drug products are formulations that form a gel/depot at the administration site and exhibit prolonged drug delivery.

PRLD: Reference Listed Drug; *NDA: New Drug Application; *ANDA: Abbreviated New Drug Application

*Source: https://www.accessdata.fda.gov/scripts/cder/ob/index.cfm

Overview of Product-Specific Guidance (PSG) Recommendations

In situ gel/depot-forming drug products	In vivo BE* study(s)	In vitro BE approach	IVRT study
Degarelix Acetate Subcutaneous Powder (RLD: NDA 022201)	No	Yes	Yes
Lanreotide Acetate Subcutaneous Solution (RLD: NDA 022074)	Yes	Yes	Yes
Leuprolide Acetate Subcutaneous Powder (RLD: NDA 021343)	Yes	No	
Leuprolide Acetate Subcutaneous Powder (RLD: NDAs 021379 and 021488)	Yes	No	
Leuprolide Acetate Subcutaneous Powder (RLD: NDAs 021731 and 213150)	Yes	No	
Leuprolide Mesylate Subcutaneous Emulsion (RLD: NDA 211488)	Yes	No	
Buprenorphine Extended Release (ER) Subcutaneous Solution (RLD: NDA 209819)	Yes	No	
Risperidone for ER Subcutaneous for Suspension (RLD: NDA 210655)	Yes	No	
Doxycycline Hyclate ER Periodontal System (RLD: NDA 050751)	Yes	Yes	Yes
Bupivacaine ER Infiltration Solution (RLD: NDA 204803)	Yes	Yes	Yes
Timolol Maleate Gel Forming/Drops Ophthalmic Solution (RLD: NDA 020330)	No	Yes	No

*BE: Bioequivalence

IVRT Study: Purpose

Mitigation of potential BE failure mode

Rate and extent of drug release:
Test vs Reference

API^{*} Formulation

Manufacturing Process

PQ1/Q2: Qualitative (Q1) and Quantitative

(Q2) sameness

*Q3: Physicochemical characteristics

comparability

*API: Active pharmaceutical ingredient

Challenges in IVRT Method Development

- Lack of compendial method
- No specific recommendation of study conditions in the PSGs
- Demonstration of discriminatory ability
- Additional step compared to other products:
 Gel/depot formation
 - Optimization of gel/depot inducing conditions

How to Address These Challenges?

Understand the mechanism of depot formation and drug release

Examples:

- Self-Aggregating Peptide Drugs: Upon administration, peptides selfaggregate to form a gel/depot, enabling prolonged drug release.
- Polymer-Based Formulations: Upon administration, polymers precipitate with the drug to form a gel/depot, allowing for prolonged drug release.

Self-Aggregating Peptide Drugs

References:

- https://pubmed.ncbi.nlm.nih.gov/35787229/
- https://pubmed.ncbi.nlm.nih.gov/28944744/
- https://www.sciencedirect.com/science/article/abs/pii/S1773224724006658

Polymer-Based Formulations

and body fluid diffuses in

Polymer precipitation with

entrapped drug substance

- Reference:
- https://pubmed.ncbi.nlm.nih.gov/35976565/
- https://pubmed.ncbi.nlm.nih.gov/37422267/
- https://pubmed.ncbi.nlm.nih.gov/34363860/

polymer in organic solvent

Diffusion-facilitated release

Degradation-facilitated release

IVRT for In Situ Gel/Depot-Forming Products

A Distinct IVRT Method Parameter for In Situ Gel/Depot-Forming Products: Induction of Gel/Depot Formation

Conventional IVRT

Drug product samples are loaded as is onto IVRT apparatus

IVRT for In Situ Gel/Depot-Forming Products Drug product samples should be in adequately formed gel/depot form before loading onto IVRT apparatus

IVRT samples:

- o not in gel/depot form or
- in inadequately formed gel/depot

Non-representative release profiles, artifacts, misleading

Incorrect assumptions on similarity or dissimilarity of release profiles between test and reference products

Key Parameters of IVRT Method Development

Sample preparation

Apparatus

Sample loading

Release medium

Flow or stirring rate

Temperature

Sampling time

In situ gel/depot-forming products

Gel/depot induction step

Step-by-step systematic approach for selection of different IVRT method parameters

Adequately sustained release profile

Complete release within reasonable timeframe

Gel/Depot Inducing Conditions: Key Considerations

- Take an exploratory approach: Investigate factors influencing the gel/depot formation process
- Explore various gel/depot-inducing conditions, including physiologically relevant ones
 - Depending on the drug product:
 - o Sample amount
 - Gel/depot-inducing media
 - Sample-to-media ratio
 - o Incubation temperature and time
- Assess consistency and reproducibility of gel/depot formation

IVRT Method Validation: Key Considerations

Discriminatory ability

Differentiation of experimental non-BE test formulations

In situ gel/depotforming products Discriminatory ability: Critical formulation and manufacturing process attributes that can affect gel/depot formation and drug release kinetics

IVRT Study Related Submission Content in an ANDA

IVRT method development

IVRT method validation

Analytical method validation

Pivotal IVRT study

- Detailed study reports
- SOP(s)/protocols effective at the time of study
- Sufficient experimental details
- 100% complete numerical raw data and representative chromatograms
- Individual concentration datasets used to calculate drug release rate

Incomplete information

Deficiencies

Delayed approval

Typical Deficiencies in IVRT Study of In Situ **Gel/Depot-Forming Drug Products**

- Gel/depot induction step was not included in the IVRT method.
- Thorough exploration of gel/depot induction under various conditions, including physiologically relevant conditions, was not conducted.
- Justification and supporting data provided for selected gel/depot inducing conditions were inadequate/incomplete.
- Gel/depot formation was inconsistent and irreproducible, potentially contributing to high variability in release profiles.
- Critical formulation and manufacturing attributes affecting gel/depot formation and drug release were not considered during the evaluation of discriminatory ability.

SUMMARY

- Gel/depot formation is a crucial step in the IVRT method for in situ gel/depot-forming drug products.
- Conduct a thorough exploration of gel/depot-inducing conditions, including physiologically relevant conditions.
- Aim to achieve a well-formed, consistent, and reproducible gel/depot to ensure a reliable and sustained in vitro drug release profile.
- Optimize the IVRT method parameters based on the understanding of depot formation and the drug release mechanism.
- During the evaluation of discriminatory ability, consider the critical attributes related to formulation and manufacturing process that can affect gel/depot formation and drug release.

Challenge Question #1

Which of the following statements about IVRT for in situ gel/depotforming products are true? Select all that apply.

- A. Understanding of gel/depot formation and drug release mechanism is important for IVRT method development.
- B. In vitro BE approach involves only IVRT study.
- C. During IVRT method development for in situ gel/depot-forming products, additional consideration should be given to gel/depot-forming step.
- D. Specific IVRT apparatus are available for in situ gel/depot-forming products.
- E. IVRT study is not needed if the test formulation is Q1/Q2 to the RLD.

Challenge Question #2

Which of the following statements about IVRT for in situ gel/depotforming products are false? Select all that apply.

- A. An adequate IVRT method should mimic the exact in vivo release profile.
- B. Selection of release medium should be based on the solubility and stability of the drug in the release medium.
- C. IVRT method validation involves demonstration of method robustness and discriminatory ability.
- D. Missing study protocols/SOPs may warrant a BE deficiency.
- E. IVRT method validation is the same as the analytical method validation.

Acknowledgements

Office of Bioequivalence

Immediate Office

Bing Li

Division of Bioequivalence I

- Utpal Munshi
- Hee Sun Chung

Assessment Teams