

### Approaches for Evaluation of Formulation Differences on Performance of Topical Products

#### Advancing Generic Drug Development 2024: Translating Science to Approval

Day 1, Session 2: Research to Support Guidance Development for Topical Drug Products

#### Tannaz Ramezanli, Pharm.D., Ph.D.

Senior Pharmacologist Division of Therapeutic Performance I/Office of Research and Standards CDER | US FDA

September 24, 2024

# **Learning Objectives**



- Describe considerations for formulation development of a test product that does not meet the "no significant difference" criterion compared to the reference standard
- Evaluate the impact of compositional differences in topical gels on bioavailability (BA)
- Evaluate the impact of compositional differences in topical gels on sensory perception of the product

## Bioequivalence (BE) for Topicals

Establishing equivalent performance, conventionally via:

- Comparative in vivo BE studies
  - Clinical endpoint
  - Pharmacodynamic endpoint (e.g., vasoconstrictor (VC) studies)

#### Developing more efficient BE approaches:

- In vitro characterization and performance tests
- Cutaneous pharmacokinetic studies



### **Single Phase Gels**



Understanding the function of excipients and their impact on <u>thermodynamic activity</u> (TA) of the drug in the topical formulations.



Most common solubility modifiers: Propylene glycol (PG) Polyethylene glycols (PEG) Glycerin



Fractional solubility is often predictive of TA of the drug in the formulation

fda.gov/cdersbia

2020 AAPS Rapid Fire Talk by Srinivas Ajjarapu, FDA Award U01FD006507

### FS and BA



#### Diclofenac sodium in PG:water formulations

**Drug Solubility in PG-water** 





Data are presented as mean  $\pm$  SD, n=3



Data are presented as mean ± SE, 3 donors 3 replicates

fda.gov/cdersbia

Courtesy of Dr. Mike Roberts and Dr. Yousuf Mohammad, FDA award U01FD006496

7

### Metamorphosis and Change in FS





- Solvent evaporation during metamorphosis of the formulation can lead to
  - Change in drug solubility at the application site

(can be monitored by measuring drug concentration in the donor compartment)

Change in microstructure/Q3 properties

May lead to change in drug permeation and BA

## Q2 Differences and BA- PEG 200 FDA

Diclofenac sodium gels with different amounts of PEG 200



FS vs time

Data are presented as mean  $\pm$  SD, n=3





Data are presented as mean±SE, 3 donors 6 replicates

fda.gov/cdersbia

Rangappa et al. 2021 AAPS Poster, FDA Award U01FD006507

## Q2 Differences and BA- PEG 200

**Metronidazole** gels with different amounts of PEG 200



FS vs time

Data are presented as mean  $\pm$  SD, n=3



Data are presented as mean  $\pm$  SE, 3 donors 6 replicates

#### IVPT (semi-finite dose)

fda.gov/cdersbia

Rangappa et al. 2022 AAPS Poster, FDA Award U01FD006507

### **Q2** Differences and **BA-PG**



11



Courtesy of Dr. Narasimha Murthy, FDA Award U01FD006507

### **Differences Beyond BA**

- Would differences in Q1/Q2/Q3 of topical products result in differences in the feel of the topical drug product and subsequently in therapeutic equivalence (TE)?
  - Establish a correlation between Q2, Q3 and sensory perception
- Can characterization of the arrangement of matter, (e.g., rheological characterizations) correlate with and/or be predictive of sensorial differences perceived by human subjects?
  - Develop objective instrumental tests measuring some Q3 attributes that can provide prediction of sensory perception of topical products

FDA

### **Sensory Attributes and TE**



#### Potential sensory attributes of gels that may impact TE



fda.gov/cdersbia

Courtesy of Dr. Yousuf Mohammad FDA Award U01FD006700

### **Sensorial Studies of the Gels**



Gels made using Carpool 980 (CBP) with different compositions of the gelling agent and alcohol



fda.gov/cdersbia

14

### **Sensorial Studies of the Gels**



Gels made using hydroxyethyl cellulose (HEC) with different compositions and PG and alcohol.



fda.gov/cdersbia

Phan et al. CRS poster 2024, FDA Award U01FD006700

# **Summary and Next Steps**



- FDA is investigating alternative, scientifically valid methods, including in vitro approaches, to support the assessment of BE for topical drug products that have compositional differences compared to the reference standard.
- The current research data suggests that when there are differences in FS-time profiles and TA, such differences may result in differences in BA of the topical drug as evaluated using IVPT.
- The Q3 properties assessed instrumently, in vitro, may be valuable in understanding most of the sensorial differences among topical gels assessed in vivo.
- Current data suggests that large differences in Q3 attributes, such as rheological, tribological behavior and texture properties are likely to be perceptible to human subjects.
- Research is underway to further evaluate impact of Q2 differences on BA and product perception of topical gel formulations.

fda.gov/cdersbia

# **Challenge Question #1**

#### Which statement is **NOT** correct?

- A. Q2 differences would always result in changes in performance of topical products
- B. It may be feasible to assess fractional solubility of the drug in conjunction with IVPT to assess the impact of Q2 changes on the performance of topical products
- C. Significant Q3 differences may result in changes in performance of topical products
- D. Metamorphosis of a formulation following topical application may change the microstructure of the product fda.gov/cdersbia

FDA

# **Challenge Question #2**



Which of the following Q3 attributes is more likely to correlate with spreadability and stickiness of topical gels?

- A. Friction of coefficient (texture)
- B. Zero shear viscosity
- C. Drying rate
- D. All of the above

### Acknowledgements



#### U.S. FDA

- Priyanka Ghosh, PhD
- Ying Jiang, PhD
- Sam Raney, PhD
- Markham Luke, MD PhD
- Robert Lionberger, PhD

#### **Research Collaborators**

Funding for research projects was made possible, in part, by the U.S. FDA through:

GDUFA Award U01FD006496, University of South Australia

Dr. Michael Roberts

GDUFA Award UU01FD006507, Topical Products Testing LLC

• Dr. S. Narasimha Murthy

GDUFA Award U01FD006496, University of Queensland

Dr. Yousuf Mohammad



# **Questions?**

#### Tannaz Ramezanli, Pharm.D., Ph.D.

Senior Pharmacologist Division of Therapeutic Performance I/Office of Research and Standards CDER | US FDA