

OPQR Testing & Research to Support Guidance Development of Inhalation Products

Advancing Generic Drug Development 2024:

Translating Science to Approval Day 1, Session 3: Research to Support Guidance Development for Inhalation Drug Products

Changning Guo, PhD

Supervisory Chemist, DPQR II, OPQR | OPQ | CDER | US FDA September 24, 2024

Everyone deserves confidence in their next dose of medicine. **Pharmaceutical quality** assures the availability, safety, and efficacy of every dose.

Learning Objectives

- Be informed on FDA's laboratory support on inhalation drug assessment.
- Understand the research efforts conducted at FDA lab to support guidance development.
- List newly recommended in vitro studies as options to establish bioequivalence (BE) for inhalation products.

OPQR Labs

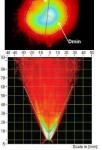
Center for Drug Evaluation and Research (CDER)

- Office of Pharmaceutical Quality (OPQ)
 - Office of Pharmaceutical Quality Research (OPQR)

Division of Pharmaceutical Quality Research II (DPQR II)

- Saint Louis, MO
- 1 of the 6 divisions under OPQR

Inhalation Lab Capability


Delivery Dose Uniformity (DDU)

Aerodynamic Particle Size Distribution (APSD)

Spray Pattern & Plume Geometry

FDA

Laser Diffraction

Microscopy (MDRS, XRM, SEM, AFM)

Dissolution

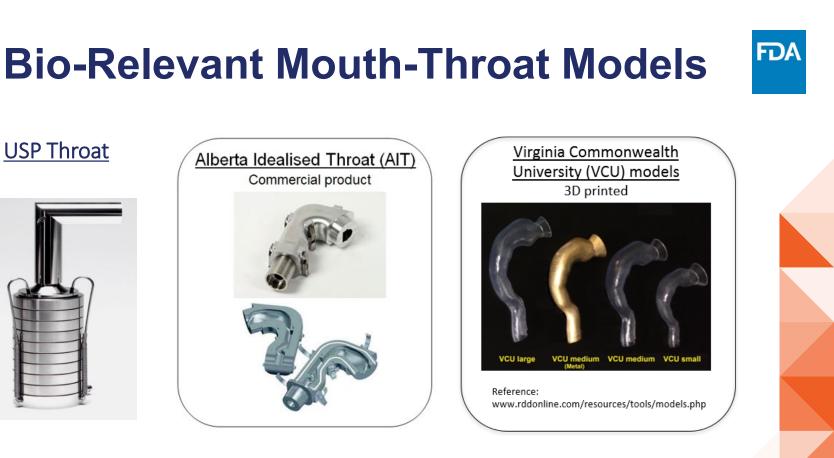
fda.gov/cdersbia

5

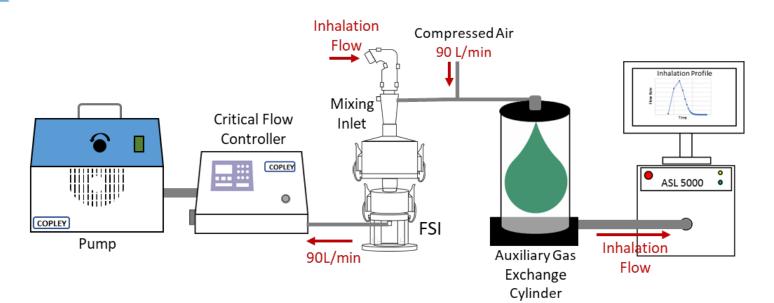
OPQR Inhalation Team

- Provide product testing and method validation program to support NDA/ANDA reviews and other regulatory actions.
- Evaluate emerging technologies and develop new methods to
 - Characterize inhalation product performance
 - Establish better in vivo in vitro correlation

Product Specific Guidance (PSG)



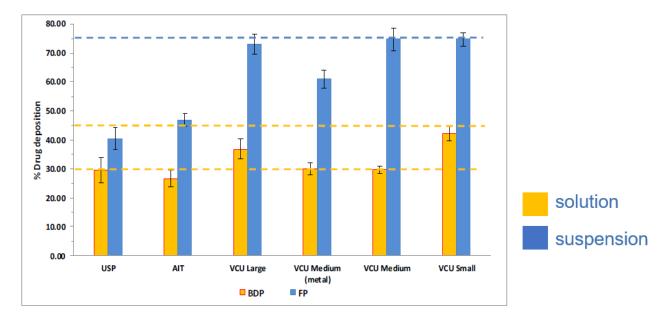
Alternative Bioequivalent (BE) Approaches


- Realistic APSD
- Laser Diffraction
- Particle morphology
- Evaporation rate and velocity profile
- Clinically relevant dissolution

FDA

Realistic Aerodynamic Particle Size Distribution (APSD)

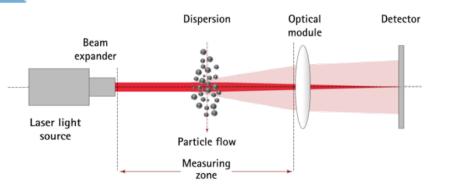
Realistic Breath Simulation


Schematic of realistic breath simulation experimental setup for DPI evaluation

fda.gov/cdersbia

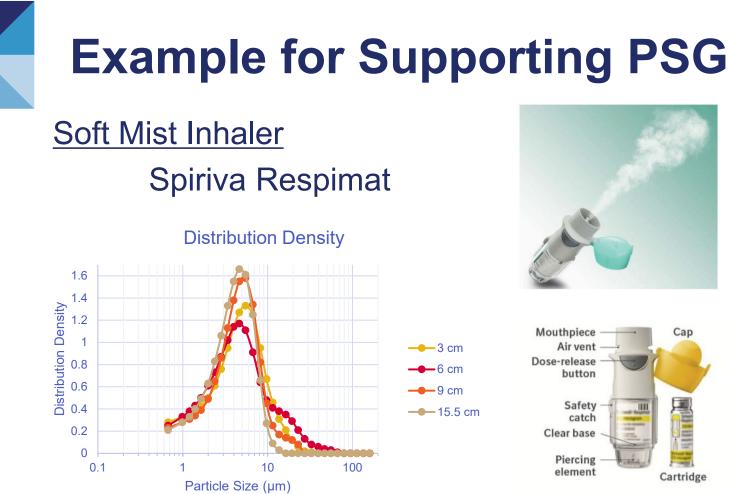
Bio-Relevant Mouth-Throat Models

MT deposition (% emitted dose)



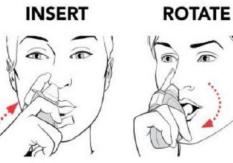
A. Kaviratna, G. Tian, X. Liu, R. Delvadia, S. Lee, C. Guo, Evaluation of Bio-Relevant Mouth-Throat Models for Characterization of Metered Dose Inhalers, *AAPS PharmSciTech*, 2019.

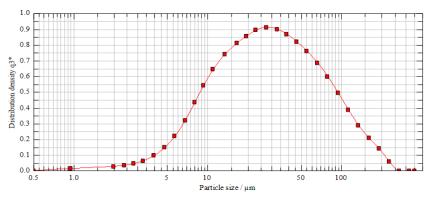
FDA


Laser Diffraction as an Alternative / Orthogonal APSD methods

Laser Diffraction

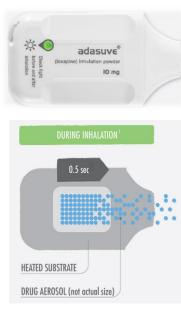
- Pros:
 - Rapid Measurements
- Cons:
 - Measures volume-based PSD, not Aerodynamic PSD
 - Not able to differentiate APIs and excipients

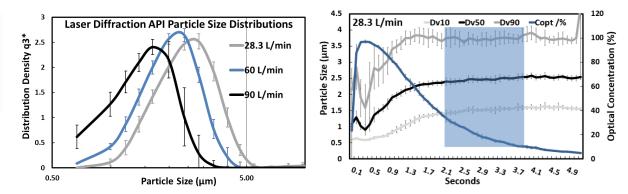



Example for Supporting PSG

Breath-Actuated Nasal Powder Onzetra Xsail

BLOW


fda.gov/cdersbia


Example for Supporting PSG

Breath-Actuated Thermally-Generated Inhalation Powder

Adasuve (Loxapine) Inhalation Powder

Laser Diffraction was not listed as an alternative method for APSD
Limitations in method due to high concentration of API particles

Elizabeth Bielski, Nathan Reed. "Loxapine Inhalation Powder: OTR Research Conducted to Inform the PSG Recommendations" SBIA 2023, Day 1, Session 2.

Nathan Reed et al "Characterizing Adasuve® (Loxapine, 10 mg) Inhalation Powder Particle Size Distribution Using Laser Diffraction". RDD 2024

Morphologically-Directed Raman Microscopy (MDRS)

fda.gov/cdersbia

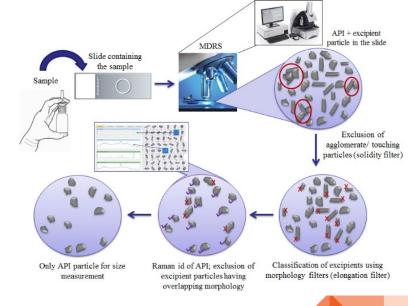
17

Why MDRS

Challenges for characterizing API particle size distribution in inhalation drug products:

- API and excipient particles coexist in the formulation
- More than one APIs in the formulation
- API may have more than one polymorphic form

MDRS


A Raman microscopy system designed for particle sizing characterization

Morphology Screening

- Capture particle image using digital microscope.
- <u>Apply morphology filters to exclude as</u> many excipient particles as possible

Raman Confirmation

 Perform Raman measurements on selected particles for chemical identification.

MDRS

Research on development, optimization, and validation of MDRS methods

- Nasal Spray Suspensions
- Dry Powder Inhalers

• Transdermal Systems, Ophthalmic Ointment, Cream

1. Q. Liu, M. Absar, B. Saluja, C. Guo, B. Chowdhury, R. Lionberger, D. Conner, B. Li, Scientific Considerations for the Review and Approval of First Generic Mometasone Furoate Nasal Suspension Spray in the United States from the Bioequivalence Perspective, *The APPS Journal*, 2019. 2. B. Thomas, M. Absar, R. Devadia, D. Conti, K. Witzmann, C. Guo, Analytical Method Development for Characterizing Ingredient-Specific Particle Size Distributions of Nasal Spray Suspension Products, *J. Pharm. Sci.*, 110 (2021) 2778–2788

Summary

- Inhalation drug testing and research is an integral part of OPQR's work.
- OPQR's laboratory-based research programs
 - Provide data to support guidance development
 - Facilitate evaluation of generic drug applications
 - Allow for risk-based assessments of new drugs

Acknowledgements

OPQ/OPQR Inhalation Team

- Nicholas Holtgrewe
- Xiaofei Liu
- Nathan Reed
- Anubhav Kaviratna *
- Brandon Thomas *
- **OPQ/OPQA** Collaborators
 - Dhaval Gaglani
 - Nashwa El-Gendy

OGD/ORS Collaborators

- Bryan Newman
- Markham Luke
- Ross Walenga
- Elizabeth Bielski
- Susan Boc
- **OGD/OB** Collaborators
 - Bing Li
 - Ke Ren

Challenge Question #1

Which city is the OPQR inhalation lab located?

A. Rockville, MD

- B. Silver Spring, MD
- C. Washington, DC
- D. Saint Louis, MO

Challenge Question #2

Which of the following technique/method is <u>NOT</u> considered as an alternative BE approach for assessment of inhalation products?

- A. Realistic APSD
- B. Solid-state Nuclear Magnetic Resonance
- C. Clinically relevant dissolution
- D. Particle morphology