

Approaches to Analyzing Comparative Use Human Factors Studies

Advancing Generic Drug Development 2024: Translating Science to Approval

Day 1, Session IV: Outlook for Drug-Device Combination Products

Jing (Jenny) Wang, Ph.D.

Staff Fellow, Division of Quantitative Methods and Modeling Office of Research and Standards, Office of Generic Drugs CDER | U.S. FDA

September 24, 2024

Disclaimer

 This presentation reflects the views of the author and should not be construed to represent FDA's views or policies.

Learning Objectives

- Provide overview of the current use of Comparative Use Human Factors (CUHF) studies to support other design differences
- Discuss the analysis approach for the noninferiority test in CUHF Studies

Current Use of CUHF Studies to Support Other Design Differences

- FDA draft guidance, Comparative Analyses and Related Comparative Use Human Factors Studies for a Drug-Device Combination Product Submitted in an ANDA (January 2017)¹
- CUHF studies are NOT recommended for every application of drug-device combination products

Early stages of development Minimize differences from the user interface for the reference listed drug (RLD)

Threshold analysis

- Labeling comparison
- Comparative task analysis
- Physical comparison of the delivery device constituent part

No design difference

Minor design difference

Other design difference

design

Modify the user interface to minimize differences

Data to support differences – e.g., Comparative Use Human Factors (CUHF) Study

1. When final, this guidance will represent the current thinking of FDA. We update guidances periodically. For the most recent version of a guidance, check the FDA guidance web page at https://www.fda.gov/regulatory-information/search-ideaudance-documents.

CUHF studies

- CUHF studies: designed to confirm that the <u>use error rate</u>, for the critical task(s) for the proposed generic combination product, <u>is not worse than</u> the corresponding use error rate for the RLD.
- Procedure of comparing error rate of Test product (ER_T) and the error rate of RLD product (ER_R) through the noninferiority (NI) test in CUHF studies as discussed in the draft guidance:
 - Step 1 Determine the allowable margin (d) by which ER_T could exceed ER_R .
 - Step 2 Estimate the study sample size considering assumed error rates and **d**.
 - Step 3 Observe error rates for the critical task(s) during the CUHF experiments.
 - Step 4 Perform the NI hypothesis test.

 H_0 : $ER_T - ER_R > d$

 H_A : $ER_T - ER_R \le d$

NI test for CUHF studies Step 1

Determine the allowable margin (d) by which ER_T could exceed ER_R

- The value of d will differ between products, depending on the indication(s) and the clinical consequences associated with failing to perform the critical tasks appropriately.
- The acceptable *d* should be decided in consultation with the FDA before the study is conducted.

NI test for CUHF studies Step 2

Calculate the study sample size considering assumed error rates and *d*

The draft guidance provides an example using the **Tango** method to calculate some power simulations given selected sample sizes with α= 0.05 and an allowable margin (d) = 0.10

Power of Paired Design to Compare Use Error Rates under Various Assumptions.

Power (%)	Within-subject Correlation	Use Error	Probability	Sample Size	
(%)					
85	0.90	10		45	
83	0.90	20		50	
80	0.90	30		55	
80	0.90	40		60	
80	0.70	10		55	
81	0.70	20		75	
81	0.70	30		90	
81	0.70	40		100	
80	0.50	10		70	
80	0.50	20		110	
80	0.50	30		135	
81	0.50	40		155	

Simulated power given selected sample sizes, assuming equal success probabilities, **a**= 0:05 and d = 0:10 and using the method of Tango [Statist. Med. 17, pp. 891-908 (1998)]. 2500 simulated clinical trials were used for each table line.

NI test for CUHF studies Tango method

- Tango method is a widely used method to calculate confidence intervals
 (CI) for the difference of two proportions in a paired design of clinical trials²
- Required information for Tango CI calculation:
 - Number of subjects who completed R tasks successfully but had errors in T tasks
 - Number of subjects who completed T tasks successfully but had errors in R tasks
 - Total number of subjects
 - Confidence level
- Of note, the Tango method is just one of the options for the analysis of CUHF studies.

^{2.} Tango, Toshiro. "Equivalence test and confidence interval for the difference in proportions for the paired-sample design." Statistics in medicine 17, no. 8 (1998): 891-908.

Observe error rates for the critical task(s) during the experiment.

- Definition of critical tasks
- Observe error/success results of subjects for each critical task

^	REF_results	TEST_results
1	1	1
2	1	1
3	1	0
4	1	1
5	0	0
6	1	1
7	0	0
8	1	0
9	1	1
10	1	1
11	1	1
12	0	0
13	1	1
14	0	0
15	1	1

NI test for CUHF studies Step 4

Perform the NI hypothesis test.

$$H_0$$
: $ER_T - ER_R > d$

$$H_A$$
: $ER_T - ER_R \le d$

- Compare the upper bound of the CI for the difference of error rates between T and R to d.
- If α = 0.05 and the upper bound of 95% CI is less than d, H₀ is rejected and NI is demonstrated.

Data analysis for CUHF studies

- In addition to the current recommendations in the draft guidance, FDA continues to conduct research to facilitate drug development and mitigate regulatory burdens for CUHF studies
- Applicants are encouraged to propose alternative data analysis methods and/or study designs for CUHF studies

Alternative data analysis methods to consider

- Non-parametric methods
 - Bootstrap-based methods
- Bayesian methods
 - Bayesian methods to estimate the distribution of the target population's performance with the Test and RLD products

Zhang, Qunshu, et al. "Applying the noninferiority paradigm to assess exposure-response similarity and dose between pediatric and adult patients." *The Journal of Clinical Pharmacology* 61 (2021): S165-S174.

Discussions between FDA and generic drug applicants

- Applicants are advised to discuss proposed alternative data analysis methods and/or study designs with FDA before initiating CUHF studies
- Programs available for the discussions
 - Model-Integrated Evidence (MIE) Industry Meeting Pilot

https://www.fda.gov/drugs/abbreviated-new-drug-application-anda/model-integrated-evidence-mie-industry-meeting-pilot-between-fda-and-generic-drug-applicants

A new pilot program to offer meeting opportunities to applicants who intend to use model-integrated evidence (MIE) or novel data analytics approaches for bioequivalence (BE) establishment in their ANDAs

Pre-ANDA Program for Complex Generic Products

FDA guidance for industry, Formal Meetings Between FDA and ANDA Applicants of Complex Products Under GDUFA (October 2022), https://www.fda.gov/media/107626/download

ANDA applicants for complex generic drug products can request product development Pre-ANDA meetings to help clarify regulatory expectations early in product development

Acknowledgement

Office of Research and Standards, OGD, CDER, FDA

- Meng Hu, PhD
- Andrew Babiskin, PhD
- Lanyan Fang, PhD
- Liang Zhao, PhD
- Markham Luke, MD, PhD
- Lei K Zhang, PhD
- Robert Lionberger, PhD

Challenge Question #1

In the FDA draft guidance, Comparative Analyses and Related Comparative Use Human Factors Studies for a Drug-Device Combination Product Submitted in an ANDA (January 2017), the comparative use human factors study is recommended for every application of drug-device combination products. This statement is

A. TRUE

B. FALSE

Challenge Question #2

In the FDA draft guidance, Comparative Analyses and Related Comparative Use Human Factors Studies for a Drug-Device Combination Product Submitted in an ANDA (January 2017), which of the following analysis methods is recommended for the noninferiority (NI) test in comparative use of human factors studies?

- A. Tango method
- B. Bootstrap method
- C. Bayesian method
- D. The guidance doesn't recommend an analysis method for NI test

Ida.gov/odorob

Questions?

Jing (Jenny) Wang, Ph.D.

Staff Fellow, Division of Quantitative Methods and Modeling Office of Research and Standards, Office of Generic Drugs CDER | U.S. FDA

jing.wang1@fda.hhs.gov