

## **Basics of Clinical Trial Design**

#### James P. Smith, MD, MS Director, Office of New Drug Policy Office of New Drugs CDER | US FDA

CITC - 2024

#### **Learning Objectives**

- Describe the characteristics of adequate & well-controlled studies
- Describe the purpose of control groups & various types of controls
- Describe methods to reduce bias in clinical investigations

FD/

#### **Adequate & Well-Controlled Studies**



"The purpose of conducting clinical investigations of a drug is to distinguish the effect of a drug from other influences, such as spontaneous change in the course of the disease, placebo effect, or biased observation."



#### **Adequate & Well-Controlled Studies**

- Clear objectives, summary of methods of analysis in protocol
- Design permits a valid comparison with a control
- Adequate selection of patients
- Assigning patients to treatment/control groups to minimize bias
- Adequate measures to minimize biases on subjects, observers, and analysts
- Well-defined and reliable assessment of subjects' responses
- Adequate analyses to assess the effects of the drug

#### What are the Scientific Questions?

- The scientific questions to be answered & trial objectives need to align
- Inform choices about trial design, data collection, and analysis
  - E.g., superiority vs. non-inferiority? How to handle events that might occur after randomization (use of rescue drug, etc.)? Is objective to understand effect of drug when added to a specific background treatment?

# **Purpose of Control Group**



- Control groups allow discrimination of patient outcomes caused by the test treatment from outcomes caused by other factors.
- What would have happened to patients...
  - if they had not received the test treatment, or
  - if they had received a different treatment known to be effective?

## **Examples of Control Groups**

- Placebo
- No treatment
- Different dose(s) or regimen(s) of same drug

21 CFR 314.126

- A different active treatment
- Historical or other external control

#### **Study Population**

- Typically, eligibility criteria should identify participants with, or at risk for, the disease or condition being studied
- May be narrowly or more broadly defined, depending on objectives
- Avoid unnecessary exclusion criteria
- Proactively set enrollment goals designed to ensure that the study population is representative of the intended use population (e.g., age, sex, race, etc.)



### Enrichment



- Selection of a study population in which detection of a drug effect (if one is present) is more likely than it would be in an unselected population
- Broad categories of strategies:
  - Strategies to decrease variability (e.g., placebo lead-in period to exclude participants with large "responses" or who demonstrate poor adherence *before* randomization)
  - Prognostic enrichment (who is most likely to progress or have an outcome of interest?)
  - Predictive enrichment (who is most likely to respond?)
    - Example: randomized withdrawal study

fda.gov/cdersbia

## Methods of Assignment to Study Arms



- Should minimize bias & assure comparability of the groups with respect to pertinent variables
- Typically, in a concurrently controlled study, assignment is by randomization

#### FDA **Randomized vs. Observational Studies** Randomized Study **Observational Study** Age, comorbidities, Patient Patient concomitant meds, family history, labs, patient preferences insurance, etc. Drug A Drug B Drug A Drug B

fda.gov/cdersbia

## **Similarity of Groups**

- Similarity at baseline
  - Randomization
- Similarity after baseline
  - Adherence to assigned treatment
  - Use of rescue therapy, if applicable
  - Completeness of data & follow-up
  - Outcome assessment

#### **Measures to Reduce Bias**

- FDA
- Concealing treatment assignments (blinding)
- Biases may be conscious or unconscious
- Aim is to ensure that study groups are treated and observed similarly during the trial (except for the intervention of interest)

#### Examples of Potential Impacts from Knowledge of Treatment Assignment



- Healthcare providers may treat the trial participant differently (in ways that could affect the outcome of interest)
- Those on active drug might report more favorable outcomes
- Observers may be less likely to identify & report apparent treatment responses in a no-treatment group
- Those on active drug may be more (or less) likely to report adverse events
- Knowledge may affect rigor of attempts to obtain follow-up data
- Knowledge could impact decisions related to analysis (e.g., look for reasons to exclude "poorly performing" study site)

fda.gov/cdersbia

### **Measures to Reduce Bias**



- Even with blinding, patients or investigators may be able to detect (or guess) treatment assignment.
- If open-label, consider prespecified decision rules, blinded outcome assessment, etc.
- Maintain confidentiality of interim results (whether individual or treatment group level).
- Statistical analysis plans should be finalized before treatment assignments revealed.

## **Assessing Response / Endpoints**



- Primary endpoint: should provide relevant evidence related to the primary objective
- Secondary endpoints: either supportive measurements related to the primary objective, or measurements related to secondary objectives
- Exploratory: further explain/support study findings or to explore new hypotheses for later research

## **Endpoints**



- Precisely defined variable intended to reflect an outcome of interest that is statistically analyzed to address a particular research question
  - Assessment itself (e.g., lab value, patient-reported outcome, physiologic test, clinical event)
  - May incorporate other information that occurs during the trial (e.g., treatment discontinuation = treatment failure)
  - Timing of the assessment
  - If relevant, how assessments in each participant are formulated or combined (e.g., composite endpoint; average, maximum, or minimum score over a pre-defined period)

#### fda.gov/cdersbia

#### 18

#### **Endpoints**

- Clinical outcome: an outcome that describes or reflects how an individual feels, functions, or survives
- Surrogate endpoint: an endpoint used as a substitute for a direct measure of how a patient feels, functions, or survives
  - Level of evidence that an effect on the surrogate predicts clinical benefit can vary; if strong, it is called a "validated surrogate endpoint" (e.g., HbA1c in diabetes mellitus, blood pressure in hypertension)



## **Intercurrent Events**

- FDA
- Events occurring after treatment initiation that affect either the interpretation or the existence of the measurements associated with the clinical question of interest
  - E.g., treatment discontinuation (and why), beginning or switching to other treatments, death
  - Do NOT lead to a problem of missing data
  - Should be considered & incorporated into design

## **Intercurrent Events**



- Consider possible intercurrent events when defining the clinical question of interest.
  - In a trial for a drug of type 2 diabetes mellitus, suppose the primary endpoint is the change in HbA1c from baseline to week 24.
  - Trial allows rescue medication if thresholds are met.
  - Examples of possible treatment effects of interest:
    - Effect if rescue medication is not available
    - Effect regardless of whether rescue medication is used



## **Strategies of Comparison**

**Factorial Design** 

|              | Randomization |                 |
|--------------|---------------|-----------------|
|              | (No A)        | (Includes A)    |
| (No B)       | Placebo       | Drug A          |
| (Includes B) | Drug B        | Drug A + Drug B |

# **Superiority vs. Non-inferiority**

- In a trial of Drug A vs. Drug B...
  - Superiority: Drug A is better than Drug B
  - Non-inferiority: Drug A is not meaningfully worse than Drug B. The "NI margin" quantifies "meaningfully worse."
- If no difference is detected between groups, are both drugs effective or ineffective?
- There is no confirmation, in this trial, that Drug B is effective: This is an assumption.

# **NI Trials & Assay Sensitivity**

- Assay sensitivity is the ability of the trial to have detected a difference between treatments of a specified size.
- Not directly assessed within an NI trial, so consider:
  - Historically, have consistent findings been observed with the active control (vs. placebo)?
  - Similarity of the new trial to the historical trials? ("Constancy assumption")
  - Quality of the new trial (poor conduct can minimize differences between treatments)

## **Other Design Considerations**

- Focus on activities essential to the study
  - Consider eliminating nonessential activities & data collection to focus available resources on critical areas
- Engage interested parties in study design
  - Patients / patient organizations
  - Study coordinators & site staff
  - Clinical investigators

## **Challenge Question #1**



#### Which of the following is NOT an example of enrichment:

- A. Enroll patients with a lab value that indicates they are at greater risk for the outcome of interest during the trial
- B. Limit enrollment to patients with a certain genetic variant that is specifically targeted by the investigational drug
- C. Ask trial participants who demonstrate poor adherence after randomization to withdraw from the trial
- D. Require patients to have 3 consistent values during a screening period for the assessment of primary interest in the trial.

# **Challenge Question #2**



The choice of a control group affects which of the following:

- A. The inferences that can be drawn from the trial
- B. The ethical acceptability of the trial
- C. The degree to which bias in conducting and analyzing the trial can be minimized
- D. The scientific credibility and impact of the results
- E. All of the above

### Summary

- Design clinical investigations to distinguish the effects of an intervention from other influences
- Always start with the clinical question(s) of interest
- Key design aspects include study population, an appropriate control, well-defined endpoints, measures to minimize bias (including assignment of treatment), and the analytical plan



