

Pharmacology & Toxicology in the Investigator's Brochure

Nikolett M. Biel, PhD

Senior Biologist Division of Hematology Oncology Toxicology Office of Oncologic Diseases, Office of New Drugs CDER | US FDA

Clinical Investigator Training Course – December 11, 2024

Learning Objectives

- Describe the types of nonclinical information provided in the Investigator's Brochure (IB)
 - Pharmacology
 - Safety pharmacology
 - Pharmacokinetics/ADME
 - Toxicology
 - General toxicology
 - Genetic toxicology
 - Other toxicology studies including reproductive toxicology
- Familiarize with references such as International Council for Harmonization (ICH) and/or FDA guidances for Industry.

fda.gov/cdersbia

Pharmacology

- Safety PharmacologyPharmacokinetics/ADME
- Toxicology
 - General toxicology
 - Genetic toxicology
 - Other toxicology studies

Pharmacology

- Proof of Concept
 - Mechanism of action
 - Activity (in vitro and/or in vivo)
- Primary (intended) and secondary (unintended) targets
- Support toxicology species selection
- Type and amount of data varies
 - Product type (e.g., small molecule vs. biologic)
 - Indication (i.e., oncology or non-oncology)
 - Stage of drug development

FD/

> Pharmacology

- Safety Pharmacology
- Pharmacokinetics/ADME
- Toxicology
 - General toxicology
 - Genetic toxicology
 - Other toxicology studies

Safety Pharmacology

Assess the potential effects on physiological functions on vital organ systems

- Cardiovascular
 - In vitro
 - In vivo (generally non-rodent; dog or monkey)
- Central nervous system (generally rodent)
- Respiratory system (generally rodent)

Studies use the intended clinical route of administration.

ICH S7 Guidance for Industry

- > Pharmacology
- Safety Pharmacology
 - Pharmacokinetics/ADME
- Toxicology
 - General toxicology
 - Genetic toxicology
 - Other toxicology studies

Pharmacokinetics/ADME

- Pharmacokinetics (PK)
 - A drugs' movement through the body
 - Describes parameters e.g., exposure, half-life, clearance
- ADME
 - <u>Absorption</u> (process to systemic exposure)
 - <u>D</u>istribution (drug presence organs/tissues, efficacy/toxicity)
 - <u>Metabolism</u> (pathways of metabolism, species comparison, human unique metabolites)
 - Excretion (mode of elimination of the drug)

Toxicokinetics

- Study of ADME in the general repeat dose toxicology studies (doses may be toxic to animals).
- Informs on parameters such as:
 - Dose proportionality in exposure.
 - Potential saturation in exposure.
 - Sex differences in exposure.
 - Accumulation following repeated dosing.
 - Loss of exposure due to anti-drug antibodies (biologics).

- > Pharmacology
- Safety Pharmacology
- Pharmacokinetics/ADME
- Toxicology
 - General toxicology
 - Genetic toxicology
 - Other toxicology studies

General Toxicology

Conducted to:

- Determine if the proposed clinical study is reasonably safe.
- Determine a clinical start dose and guide dose escalation for the clinical study.
- Identify potential dose limiting toxicities to inform clinical safety monitoring.
- Assess potential toxicities that cannot be identified in clinical trials.

FD/

General Toxicology

Same route of administration and schedule as clinical study in a rodent and non-rodent species.

- Duration of nonclinical studies relative to clinical development described in ICH M3R2 guidance.
 - 2-weeks in two species (rodent, non-rodent) to support a trial up to 2 weeks.
 - Follow the clinical trial timeframe for studies lasting between 2 weeks and 6 months.
 - 6-months (rodent) and 9-months (non-rodent) to support clinical trials lasting longer than 6 months.
- Oncology pharmaceuticals follow ICH S9 and ICH S9 Q&A guidance.
 - 1-month duration to support FIH trials in two species (rodent, non-rodent).
 - 3-month duration to support a registrational trial intended to support a marketing application in two species (rodent, non-rodent).

For biological pharmaceuticals there may only be one species for toxicology studies or none.

fda.gov/cdersbia

General Toxicology

Regulatory guidelines accept data from a variety of species.

Species commonly used

- Rodent mouse, rat
- Non-rodent dog, monkey, rabbit

Species selection depends on the drug target and pharmacological relevance.

- Small molecules may be based on metabolism
- Biologic generally based on target binding

FD/

- Drug/Indication: Microtubule inhibitor being developed for treatment of advanced solid tumors.
- Produced irreversible optic nerve degeneration at mid and high doses in the rat repeat-dose toxicology study.
- Based on concerns monitoring was increased (optic exams and imaging), and information was added to the protocol and informed consent.

- Drug class/Indication: Epigenetic targeting drugs being developed for treatment of solid tumors and hematologic malignancies.
- Produced malignancies (lymphoma) in rat 3-month repeatdose toxicology studies.
- Secondary malignancy has also been observed in clinical trials.
- Based on concerns, patient populations being studied were considered and information was added to the IB and informed consent.

- Drug class/Indication: antibody drug conjugate with topoisomerase 1 inhibitor payload
- Led to severe kidney toxicity (increased urine protein, proteinaceous casts and multifocal necrosis) in the monkey repeat dose toxicology study.
- Due to observed toxicity especially to kidney, the proposed clinical start dose was lowered from the Sponsor proposed dose and dose escalation was modified.
- Kidney toxicity was observed in the clinical trial leading to additional safety monitoring, update to the IB and the patients informed consent form.

- Drug class/Indication: immune-agonist developed for patients with urothelial carcinoma to be dosed locally in the bladder.
- Low systemic exposure observed in the monkey repeat dose toxicology study.
- Clinical safety monitoring of up to 6 hours post first dose was added to the protocol due to risk of cytokine release syndrome.

- > Pharmacology
- Safety Pharmacology
- Pharmacokinetics/ADME
- Toxicology
 - General toxicology
 - Genetic toxicology
 - Other toxicology studies

Genetic Toxicology

- Drugs may be carcinogenic.
- Carcinogenicity study results generally available at the time of drug approval.
 - Not warranted for pharmaceuticals administered infrequently or for short duration of exposure (ICH S1).
 - Not warranted for advanced cancer indications (ICH S9).
- Genetic toxicology studies are:
 - surrogate for carcinogenicity; and
 - help address concerns about risks to humans.
- Results can inform on duration of contraception.

FD/

Typical Genetic Toxicology Studies

FDA

Genetic toxicology studies are generally conducted with small molecule drugs.

- In vitro
 - A test for gene mutation in bacteria.
 - An assay in mammalian cells to detect chromosomal damage.
- In vivo
 - An assay in rodent species to detect chromosomal damage to hematopoietic cells.

Other genetic toxicology assays may be conducted (ICH S2).

Timing of Genetic Toxicology Studies

Relative to clinical development:

- Gene mutation assay to support a single dose clinical study.
- An additional chromosomal damage study if proposing multiple doses in a clinical study.
- Complete battery conducted prior to Phase 2.
- For oncology pharmaceuticals, studies may be submitted with the marketing application.
 - Results from genetic toxicology studies are warranted for studies conducted in healthy volunteers during drug development.

- > Pharmacology
- Safety Pharmacology
- Pharmacokinetics/ADME
- Toxicology
 - General toxicology
 - Genetic toxicology
 - Other toxicology studies (e.g., reproductive toxicology)

Teratogenicity (e.g. Thalidomide)

- Prescribed to pregnant women for nausea and insomnia in the 1950s and 1960s.
- Resulted in over 10,000 births with severe limb malformations.
- Use in pregnant women banned in 1961.
- Link between exposure and adverse effects was possible because of the potency of the drug and relative short time period between exposure and manifestation of effects.
 - The sensitive period to thalidomide during pregnancy is ~ days 20–34 after fertilization.

Kim and Scialli. Toxicological Sciences, Volume 122, Issue 1, July 2011, Pages 1-6

fda.gov/cdersbia

Reproductive Toxicology

- Considerations
 - Patient population (e.g., males, women of childbearing potential, women not of childbearing potential)
 - Small molecule vs biotechnology-derived pharmaceuticals
- Studies that cover fertility, embryo-fetal, and pre- and postnatal periods typically follow M3(R2), S5(R3), S6(R1)
- For oncology indications, also consult ICH S9 and the guidance Oncology Pharmaceuticals: Reproductive Toxicity Testing and Labeling Recommendations Guidance for Industry

Summary

Nonclinical studies are an important part of drug development to inform on the mechanism of action of the drug, the safety of a proposed first in human clinical dose, the potential toxicities that may be observed during clinical studies and inform on the possible long-term adverse effects during the life cycle of the drug post approval.

Resources

https://www.fda.gov/regulatory-information/search-fda-guidance-documents

- S1 Carcinogenicity Studies
- S2 Genotoxicity Studies
- S3 Toxicokinetics and Pharmacokinetics
- S4 Toxicity Testing
- S5 Reproductive Toxicology
- S6 Biotechnology-derived Products
- S7 Safety Pharmacology Studies
- S8 Immunotoxicology Studies
- S9 Nonclinical Evaluation for Anticancer Pharmaceuticals
- M3 Nonclinical Safety Studies for the Conduct of Human Clinical Trials
- Oncology Pharmaceuticals: Reproductive Toxicity Testing and Labeling Recommendations

fda.gov/cdersbia

Challenge Question #1

The safety pharmacology core battery does not include:

- A. Cardiovascular system
- B. Central nervous system
- C. Respiratory system
- D. Renal system

Challenge Question #2

A complete battery of genotoxicity studies for non-oncology indications should be completed:

- A. Prior to the FIH IND stage.
- B. Prior to initiating a Phase 2 study.
- C. Prior to submitting a registrational clinical trial intended to support drug approval.
- D. At the time of the marketing application.

Thank you

fda.gov/cdersbia

29