Saxagliptin (Onglyza): A Case Study in Quality Risk Management

Stephen Liebowitz, Ph.D.
Group Director
Global Regulatory Sciences
Bristol-Myers Squibb

Objectives of this Presentation

To illustrate how Q10 was applied in the development of a new drug product and used in Production

To provide insight of knowledge management [1.6.1.] and quality risk management [1.6.2]

ICH Q10 (Scope 1.2) ... the product lifecycle included the following technical activities for new and existing products:

Pharmaceutical Development

Formulation development

Manufacturing process dev't & scale-up

Technology Transfer

Commercial Manufacturing

ICH Q10 Knowledge Management (1.6.1)

- Product and process knowledge should be managed from development through the commercial life of a product...
- Knowledge management is a systemic approach to acquiring, analyzing, storing, and disseminating information related to products, mfg. processes, and components.

Knowledge Acquisition

- Defining the Product Profile
- Public domain literature, patent review
- API attributes and limitations
- Definition of the DP manufacturing process
- Ranging the manufacturing process

Knowledge Analysis

- Determining elements of intrinsic criticality, e.g. API attributes, process parameters, environmental conditions
- Risk analysis of the critical elements, e.g.
 FMEA, HACCP
- Defining a Control Strategy, e.g. integration of the process controls into facility QMS

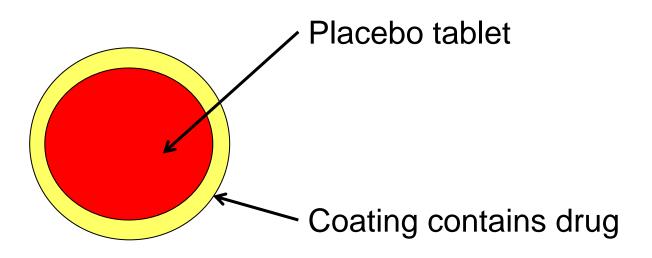
Knowledge Storage

- Development reports
- E-notebooks
- E-network databases
- Manufacturing Orders
- SOPs, work instructions, best practices

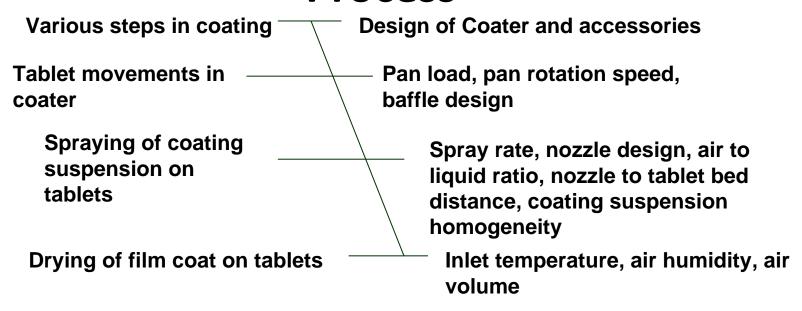
Knowledge Dissemination

- Joint functional area meetings, deep dives
- Technology transfer- "go to the customer"
- On-site technology seminars
- Demonstration runs

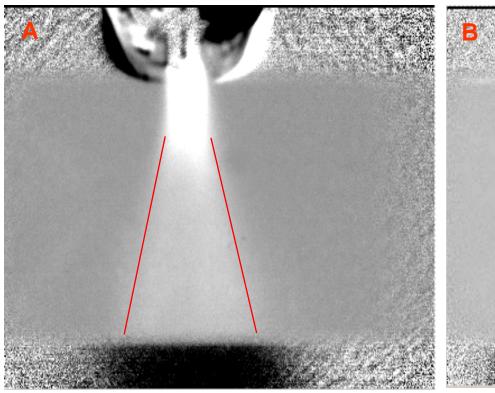
KM and QRM- A Case Study Saxagliptin

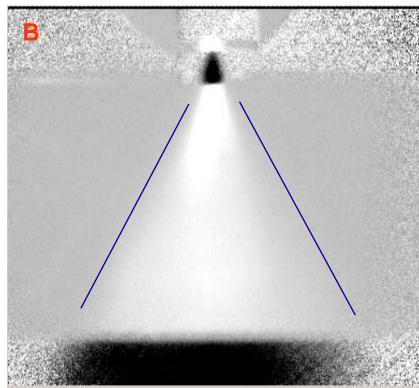

- Dipeptidyl peptidase IV inhibitor (DPP4) for Type II diabetes
- pKa = 7.2
- BCS Class III

Controlling Intramolecular Cyclization

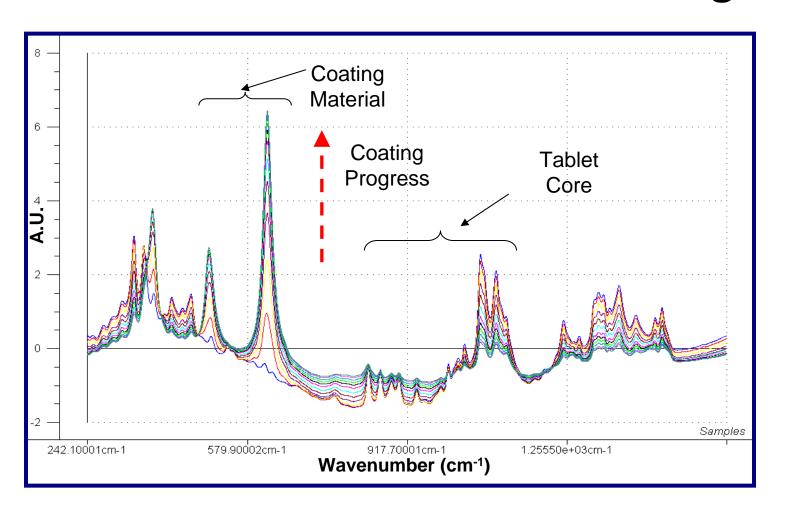

Cyclization

- Occurs in solid and solution state
- Accelerates with commonly used excipients
- Accelerates when processed under wet & dry granulation
- Acidic environment stabilizes saxagliptin


DP Strategy- Film Coat Saxagliptin The Critical DP Manufacturing Step



Analysis of Variables That May Impact the Coating Process


Comparison of different spray nozzles and spray patterns

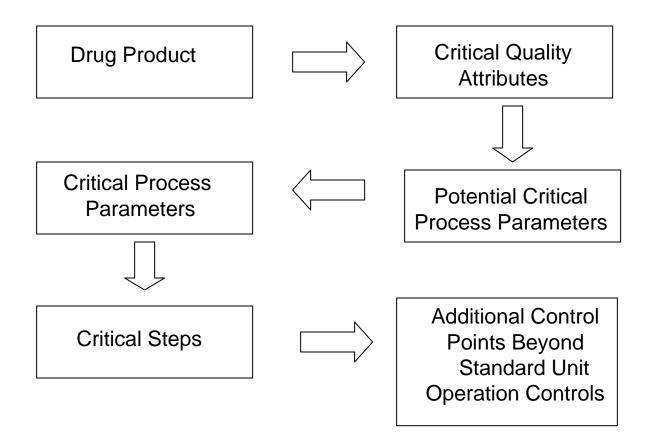
Cone angle of (A) nozzle vs. (B) nozzle

Use of Raman to Monitor Coating

Process Optimization DOE was performed on Commercial Scale Equipment

Design: Saxagliptin Film Coated Tablets 2⁽⁵⁻¹⁾ Fractional Factorial with 3 Center Points Design - 19 Runs

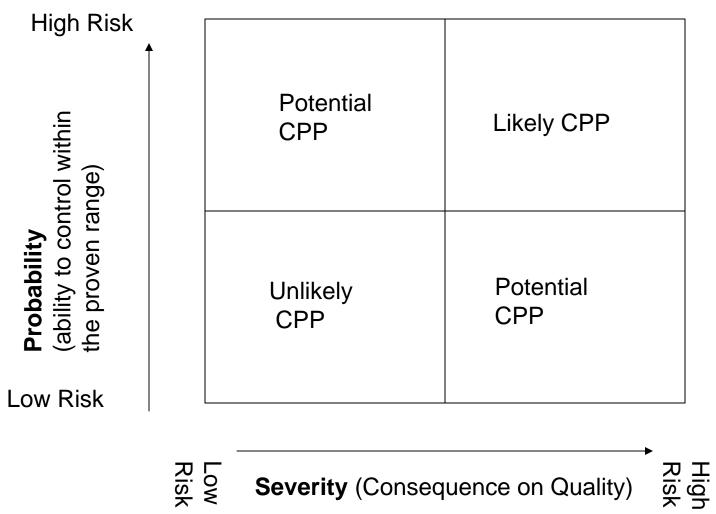
Actual Levels used for LOW(-1), CENTER(0), and HIGH(+1)


			Inlet		Atomizing	
	API		Temperature	Total Spray Rate	Air+Pattern air	Air Volume
	concentration	API/Polymer Ratio	°C	from 3 guns (g/min)	per gun (SLPM)	(CFM)
LOW(-1)	2% 🚤		50.00	60.00	200.00	525.00
CENTER(0)	4%	1:4	52.50	81.00	250.00	560.00
HIGH(+1)	8% -	1:1	55.00	105.00	300.00	600.00

A constant ratio of 1.5:1 was maintained between atomizing and pattern air for all runs.

Process Knowledge Acquired in Development and Transferred Forward to Production

- Key Quality Attributes identified after risk assessment
 - content uniformity
 - potency
- Design space established using fundamental process understanding, modeling and Design of Experiments (DOE)
- A predictive model for CU and potency created for the Coating Step


Data Analysis to Define a Control Strategy

Quality Risk Analysis (ICH Q10 1.6.2)

Event	A potential CPP because of impact and frequency			
Severity	Consequence on Quality = HIGH Risk for potential CPP = LOW Risk for non CPP			
Probability	 LOW Risk: operating range is well within the boundaries of proven range MEDIUM Risk: operating close to the boundaries of proven range HIGH Risk: operating close to the boundaries of proven range and the edge of failure 			
Overall Risk	Combination of severity and probability			

Communicating Risk Assessment

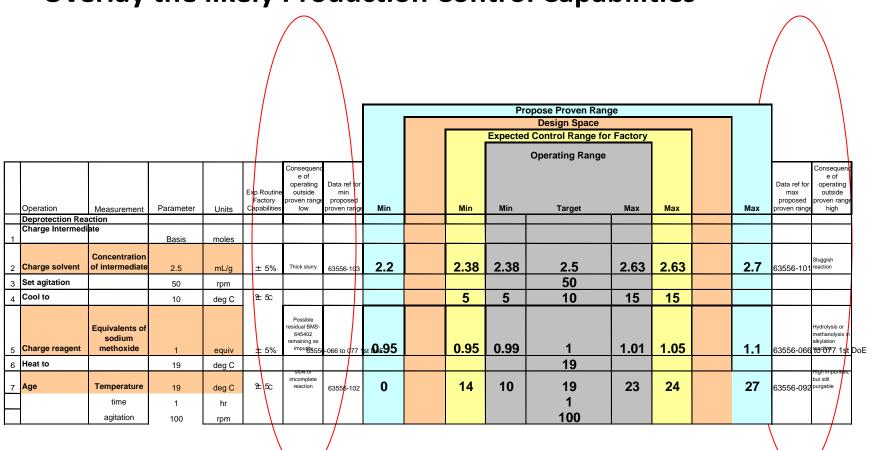
Production Process was Assessed for Criticality, Risk and Control

- A 5 Step Approach was taken
- Applicable for either drug substance or drug product
- When considering CPPs, determine what is critical and then how to control it
- Control of CPPs are additional to the standard level of controls

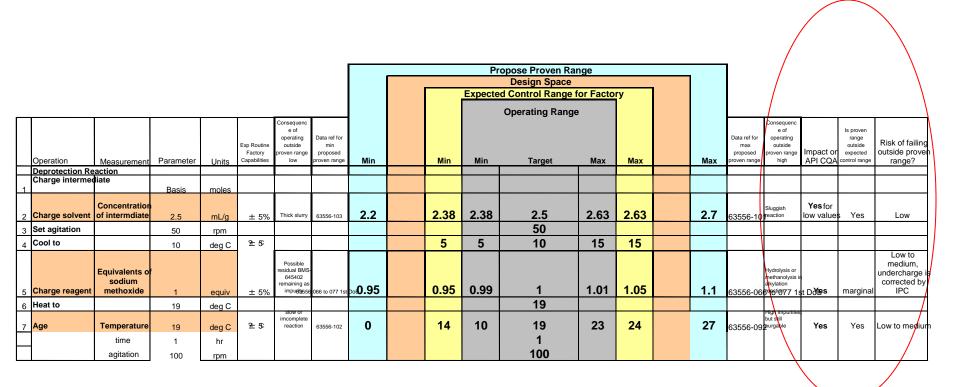
Drug Substance Process Controls

An Example of Process Parameter Risk Assessment using the 5 step approach

1. Lay out all the process parameters in each step


		Measure-		
	Operation	ment	Parameter	Units
	Deprotection Rea	ction		
1	Charge intermediate		Basis	moles
2	Charge solvent	Concentration of intermediate	2.5	mL/g
3	Set agitation		50	rpm
4	Cool to		10	deg C
5	Charge reagent	Equivalents of sodium methoxide	1	equiv
6	Heat to		19	deg C
7	Age	Temperature	19	deg C
		time	1	hr
		agitation	100	rpm

November 14-16, 2011 | Sheraton | Brussels, Belgium


2. Compile Experimental conditions (target, proven, operating ranges) and establish Design Space

					Propose Proven Range								
						Design Space							
								Expected	d Control Range fo	r Factory			
	T			ı					Operating Range				
	Operation	Measurement	Parameter	Units	Min		Min	Min	Target	Max	Max		Max
	Deprotection Rea	ction											
1	Charge BMS- 645402		Basis	moles									
2	Charge solvent	Concentration of BMS-645402	2.5	mL/g	2.2			2.38	2.5	2.63			2.7
3	Set agitation		50	rpm					50				
4	Cool to		10	deg C				5	10	15			
5	Charge reagent	Equivalents of sodium methoxide	1	equiv	0.95			0.99	1	1.01			1.1
	Heat to		19	deg C					19				
	Age	Temperature	19	deg C	0			10	19	23			27
		time	1	hr					1				
]	agitation	100	rpm					100				

3. Understand the consequences of high and low points of a range Overlay the likely Production Control Capabilities

4. Assess the risk of the process parameter on quality (CQA) to determine if it's a likely CPP and consider needed controls

5. Assess what additional work is needed to determine if parameter is characterized as a CPP

Impact on API CQA	Is proven range outside expected control range	Risk of failing outside proven range?
Yes for low values	Yes	Low
		Low to
Yes	marginal	medium, undercharge is corrected by IPC
Yes	Yes	Low to medium

QRM in Manufacturing- Going Beyond Product Development

- QRM begins in Product Development and continues in Manufacturing as part its lifecycle management
- Knowledge gained during development is foundational to a process, and the manufacturing history builds on that knowledge base

QRM as Part of the Life-Cycle Management of a Product

- Process Changes- internal and external to the Design Space
- Input Material Changes
- Scale Changes
- Process Equipment Changes
- Site Changes
- Process Improvements

KM and QRM Summary

- KM and QRM begin in Product Development and continues through a product's life cycle
- Understanding the product and its manufacturing process are needed to create an effective control strategy
- QRM is integral to executing an effective control strategy and maintaining the product

Acknowledgments

Toby Massa

Gerry DiDonato

Jean Tom

Divyakant Desai

Howard Stamato