Quantitative In Situ Measurement of Biomolecules for Companion Diagnostics

David L. Rimm M.D., Ph.D Professor, Director of Translational Pathology Dept. of Pathology Yale University School of Medicine

Disclosures

- I am a consultant to Amgen, Applied Cellular Diagnostics, Avida Labs, Biocept, BMS, Cernostics, Genoptix/Novartis, Metamark Genetics, MDAgree, OptraScan, and Perkin Elmer
- Cepheid, Genoptix, Gilead Sciences, Kolltan and OncoplexDx fund research in my lab.

Outline for Presentation

- Using immunohistochemistry (IHC) or quantitative immunofluorescence (QIF) to measure protein on slides
- The challenge of a continuous biomarker the HER2 example
- The challenge of defining the threshold of detection The ER example

Immunoperoxidase stain

Uses of IPOX: •Identification (binary) •Reading/estimation (ordinal) •Quantification (continuous)

The human eye is not a great tool for assessment of intensity

Different Intensities of HER2 IHC Staining Observed Within HER2(+) Patient Population

Intensities of HER2 IHC Staining Observed in HER2⁺ Patients From the HERA Trial

Although there was a high proportion of positive staining tumor cells in all of the 3+ samples the range of staining intensity varied.

Slide provided by Mitch Dowsett

Zabaglo L, et al. Presented at 33rd SABCS; December 8-12, 2010; San Antonio, TX. Abstract PD10-01.

From an FDA submission for an HER2 antibody submission

Inter-Observer Reproducibility

The inter-observer reproducibility was assessed using 40 invasive breast cancer cases (resection specimens) that were sectioned and provided to the 3 sites for staining and interpretation. The sections were blinded and randomized at each site prior to scoring. Interobserver agreement between the 2 independent study sites, was 87.5% (95% CI = 73.3% to 95.8%). The agreement between the independent study sites and LBN was 92.5% (95% CI = 79.6 to 98.4%) and 85% (95% CI = 70.1% to 94.3%), at site 1 and site 2, respectively.

Conclusion: We are willing to accept an error rate of up to 15%!?

"Real" Pathologist Reproducibility: 3 different pathologists read Allred scores on 100 cases of breast cancer

Path 1 v. Path 2: Kappa = 0.482 (p<0.001 Path 1 v. Path 3: Kappa = 0.444 (p<0.001 Path 2 v. Path 3: Kappa = 0.400 (p<0.001

*Positive/Negative concordance: 92-95%

In RED, 9% misclassification rate

Mark Gustavson

Artifactual Grouping by Pathologists

Estrogen Receptor

MET (HGF Receptor)

Logrank (Mantel-Cox): p=0.4584

Commercially Available Pathology-Focused Image Analysis Platforms

- Definiens
- Visiopharm
- Perkin Elmer Vectra/INform
- Hamamatsu Nanozoomer
- Leica/Aperio
- Tissuegnostics
- Ventana (formerly Bioimagene)
- Optra SCAN
- Genoptix (formerly HistoRx) AQUA
- Many others sold as research platforms

AQUA[®]: objective analyte measurement on a tissue slide based on co-localization

Step 1: Mask (define region of interest, exclude stroma, blank space, etc) = colocalization with Cytokeratin for carcinoma

Step 2: Define the numerator (target) and denominator (compartment)

Step 3: Calculate the AQUA score

Step 4: Convert to absolute concentration or normalize to set of uniform standards

Generating the AQUA® score

TMA-Tissue Microarray WTS-Whole Tissue Section

Cytokeratin

Tumor Mask

Estrogen Receptor

Combine DAPI image and cytokeratin image then cluster to assign each pixel to a subcellular compartment

ER antibody used is 1D5

Alley Welsh

Lowest positive vs. highest negative

Expanded "levels" to visualize threshold contracted dynamic range of grayscale (max RGB input level 255→16)

Discordant classification of ER status in YTMA 130 cohort

Precision Results (ER-alpha)

	Pearson R	Slope
Day 1 v. Day 2	.97	.97
Day 1 v. Day 3	.97	1.01
Day 2 v. Day 3	.98	1.04

%CV = 4.2

Mark Gustavson and Jason Christiansen

Comparison **Between** Methods (reproducibility)

100

90

80

70

60

semi

DAB semi vs DAB

Elizabeth Zarrella and Veronique Neumeister

Regression of IHC vs QIF scores for CB11 and SP3 in YTMA 263

CB11

SP3

Outline for Presentation

- Using immunohistochemistry (IHC) or quantitative immunofluorescence (QIF) to measure protein on slides
- The challenge of a continuous biomarker the HER2 example
- The challenge of defining the threshold of detection The ER example

FDA Cleared Companion Dx antibodies:

Drug	Antigen	Company	Antibody
Trastuzumab	HER2	Ventana	4B5
Trastuzumab	HER2	Leica Biogenex	CB11
Trastuzumab	HER2	Dako	A0485
Endocrine Rx	Estrogen Receptor	Ventana	SP1
Endocrine Rx	Estrogen Receptor	Dako	1D5

What are we using for IHC?

Antibody	Ν	Percent
4B5	568	55%
A0485	54	5%
CB11	24	2%
Herceptest	296	29%
SP3	52	5%
other	37	4%
Total	1031	

JOURNAL OF CLINICAL ONCOLOGY A SCO SPECIAL ARTICLE

Recommendations for Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Update

Antonio C. Wolff,* M. Elizabeth H. Hammond,* David G. Hicks,* Mitch Dowsett,* Lisa M. McShane,* Kimberly H. Allison, Donald C. Allred, John M.S. Bartlett, Michael Bilous, Patrick Fitzgibbons, Wedad Hanna, Robert B. Jenkins, Pamela B. Mangu, Soonmyung Paik, Edith A. Perez, Michael F. Press, Patricia A. Spears, Gail H. Vance, Giuseppe Viale, and Daniel F. Hayes*

RESEARCH ARTICLE

Open Access

Determining sensitivity and specificity of HER2 testing in breast cancer using a tissue micro-array approach

Tim JA Dekker^{1,2}, Susan Ter Borg³, Gerrit KJ Hooijer³, Sybren L Meijer³, Jelle Wesseling⁴, James E Boers⁵, Ed Schuuring⁶, Jos Bart⁶, Joost van Gorp⁷, Wilma E Mesker², Judith R Kroep¹, Vincent THBM Smit⁸ and Marc J van de Vijver^{3*}

Studies done "by eye" cannot see discordance

Table 3 SP3, 4B5 and Herceptest.

			SP3		343		1.57	4B5		- 52		н	erceptes	t
		0,1+	2+	3+	_		0,1+	2+	3+	_		0,1+	2+	3+
4B5	0,1+	911	15	0	4B5	0,1+	920	7	0	SP3	0,1+	930	9	0
	2+	30	26	1		2+	42	15	0		2+	27	18	2
	3+	1	7	72		3+	7	8	68		3+	6	3	66
To	otal	942	48	73	To	otal	969	30	68	Тс	otal	963	30	68

Table 4 HER2 status determined on TMA (SP3, 4B5 and mono color SISH)

		Less than 1%
Total complete results	1,020 (84.3%)	discordance between
Negative	932 (91.4%)	
Positive	80 (7.8%)	cytoplasmic and
Discordant results	8 (0.8%)	extracellular domain
Incomplete results	190 (15.7%)	antibodies
Total number of cases	1210 (100%)	

HER2, human epidermal growth factor receptor 2; SISH, silver *in situ* hybridization; TMA, tissue micro-array.

SP3 C vs CB11 C (NCCTG 9831 Arm C)

Data from NCCTG9831 from ongoing collaboration with Edith Perez and Karla Ballman

DAB shows same effect, but more subtle

CB11 (ICD)

SP3 (ECD)

HER2 Standardization Array (YTMA 263)

3+, AMP	1+, NOT AMP	0, NOT AMP	2+, AMP	3+, AMP	1+, NOT AMP	0, NOT AMP	2+, NOT AMP	CELL LINES	NORMAL BREAST TISSUE (NBT)
1	2	3	4	5	6	7	8	9	10
2008	2011	2011	2010	2005	2009	2004	2011	MB453	NBT
2007	2011	2011	2007	2004	2009	2004	2011	BT20	NBT
2011	2011	2011	2006	2004	2008	2009	2011	MCF7	NBT
2011	2011	2011	1998	2003	2007	2009	2011	MB468	NBT
2011	2011	2010	2004	2003	2007	2009	2011	ZR751	NBT
2010	2011	2010	2004	2002	2006	2007	2011	MB361	NBT
2009	2011	2007	2003	2002	2011	2007	2011	SKBR3	NBT
2009	2011	2007	2003	2002	2011	2011	2011	UACC812	NBT
2008	2010	2006	2011	2002	2011	2011	2007	MDA231	NBT
2008	2010	2006	2010	2002	2011	2011	2007	BT474	NBT

CB11 4 6 C 8 徽 E Co 30 0

HER2

Daniel Carvajal

surveillance.cancer.gov/joinpoint
joinpoint@imsweb.com

PRODUCED BY Statistical Methodology and Applications Branch surveillance Research Program, Division of Cancer Control and Population Sciences National Cancer Institute

> Information Management Services. Inc. Calverton. MD

HER2 CB11 analysis

All: 1 Joinpoint

Test For Number of Joinpoints									
TestNullAlternateNumeratorDenominatorNumberHypothesisAlternateDegrees ofNumber ofSignificanceNumberHypothesisFreedomFreedomPermutation sP-ValueLevel~									
#1	0 Joinpoint(s)	1 Joinpoint(s) *	2	88	4500	0.0002222	0.0500000		

Final Selected Model 1 Joinpoint(s)

Daniel Carvajal

Using Joinpoint to Assess Ab Sensitivity and Specificity to Predict FISH amplification in YTMA 263

HER2 antibody	Joinpoint cut-point (AU)	Sensitivity (%)	Specificity (%)	Positive predictive value (%)	Negative predictive value (%)
CB11	1299.3	94.12	85.48	78.05	96.36
A0485	1495.9	90.62	85.71	78.38	94.12
SP3	525.8	88.24	98.41	96.77	93.94
D8F12	767.6	90.91	93.88	90.91	93.88

HeCOG 10/05 patient subgroups

Table 2. Biological subgroups	
Subgroup	N (%)
ER(+)/PgR(+)/HER2(-)	366 (51.9)
ER(+)/PgR(+)/HER2(+)	90 (12.8)
ER(+)/PgR(-)/HER2(-)	66 (9.4)
ER(+)/PgR(-)/HER2(+)	23 (3.3)
ER(-)/PgR(-)/HER2(-) (TNBC)	68 (9.6)
ER(-)/PgR(-)/HER2(+)	69 (9.8)
ER(-)/PgR(+)/HER2(-)	15 (2.1)
ER(-)/PgR(+)/HER2(+)	7 (0.9)
Not determined	1 (0.1)

Table 3. Treatment subgroups	
Treatment group	N (%)
ER(+) with hormonotherapy	527 (96.7 of ER[+])
ER(+) without hormonotherapy	18 (3.3 of ER[+])
HER2(+) with trastuzumab	186 (98.4 of HER2[+])
HER2(+) without trastuzumab	3 (1.6 of HER2[+])
Hormonotherapy and trastuzumab	111 (15.7 of total)
ER(-) with hormonotherapy	0 (0)
HER2 (-) with trastuzumab	0 (0)

Relationship between CB11 and SP3 on HeCOG 10/05

TM247A1+B1_cut6_CB11

HER2 ICD/ECD protein expression by quadrants

- Cut-points obtained using YTMA 263 slides stained alongside HeCOG and analyzed using Joinpoint software.
- Quadrants:
- Q1 (ICD_{low}/ECD_{high}): 5/159 patients (3.1%).
- **Q2 (ICD_{high}/ECD_{high}):** 59/159 patients **(37.1%)**.
- Q3 (ICD_{high}/ECD_{low}): 24/159 patients (15.1%).
- **Q4 (ICD_{low}/ECD_{low}):** 71/159 patients **(44.7%)**.

Disease-free survival in HER2-positive, Trastuzumab-treated patients from HeCOG 10/05: Q2 vs Q3

Log rank *P*=0.027; HR=0.23 (95% C.I.: 0.037 to 0.815)

Outline for Presentation

- Using immunohistochemistry (IHC) or quantitative immunofluorescence (QIF) to measure protein on slides
- The challenge of a continuous biomarker the HER2 example
- The challenge of defining the threshold of detection The ER example

FDA Cleared Companion Dx antibodies:

Drug	Antigen	Company	Antibody
Trastuzumab	HER2	Ventana	4B5
Trastuzumab	HER2	Leica Biogenex	CB11
Trastuzumab	HER2	Dako	A0485
Endocrine Rx	Estrogen Receptor	Ventana	SP1
Endocrine Rx	Estrogen Receptor	Dako	1D5

Conflicting Papers

VOLUME 24 · NUMBER 36 · DECEMBER 20 2006

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Immunohistochemical Detection Using the New Rabbit Monoclonal Antibody SP1 of Estrogen Receptor in Breast Cancer Is Superior to Mouse Monoclonal Antibody 1D5 in Predicting Survival

Maggie C.U. Cheang, Diana O. Treaba, Caroline H. Speers, Ivo A. Olivotto, Chris D. Bajdik, Stephen K. Chia, Lynn C. Goldstein, Karen A. Gelmon, David Huntsman, C. Blake Gilks, Torsten O. Nielsen, and Allen M. Gown

From the Genetic Pathology Evaluation Centre at Vancouver General Hospital,

A B S T R A C T

A Comparison of Estrogen Receptor SP1 and 1D5 Monoclonal Antibodies in Routine Clinical Use Reveals Similar Staining Results

Jane E. Brock, MBBS, PhD, Jason L. Hornick, MD, PhD, Andrea L. Richardson, MD, PhD, Deborah A. Dillon, MD, and Susan C. Lester, MD, PhD

Key Words: Estrogen receptor; SP1; 1D5; Monoclonal antibodies; Breast carcinoma

DOI: 10.1309/AJCPSKFWOLPPMEU9

Using an index TMA to define the Threshold of Detection

Should we be following the rules for limits of detection and quantification of analytical chemistry?

Comparison of SP1 to 1D5 using QIF (AQUA) on a panel of cell line and patient controls – Higher Affinity leads to better Signal to Noise

Input levels adjusted to max RGB 17 in inset

Input levels adjusted to max RGB 17 in inset

Comparison of antibodies by QIF assay suggests SP1 is more sensitive than 1D5

(Appl Immunohistochem Mol Morphol 2013;21:139-147)

Research Article

Quantitative Analysis of Estrogen Receptor Expression Shows SP1 Antibody Is More Sensitive Than 1D5

Allison W. Welsh, PhD, Malini Harigopal, MD, Hallie Wimberly, BS, Manju Prasad, MD, and David L. Rimm, MD, PhD

The Goal: To Measure Protein on a slide with the accuracy of Analytical Chemistry

"Lessons Learned"

- Standardization is critical for reproducibility
- Cell lines can help establish cut-points or thresholds
- The human eye is great for many things, but not assessing subtle differences in intensity
- The binding domain and the affinity of the antibody are critical variables

Rimm Group: Kurt Schalper Daniel Carvajal Jason Brown Susan Combs **James Smithy** Lauren Moore Joe McLaughlin Mehmet Altan Nemanja Rodic John McGuire Joanna Hu Vasiliki Pelakanou Mengyao Feng Nikita Mani Yan Song Maria Toki

Thanks to:

<u>Rimm Lab Alums:</u>

Vamsi Velchetti Elsa Anagnostou Anastasios Dimou Alley Welsh Robert Camp Maria Vassilikapoulou Huan Cheng Jennifer Bordeaux Vamsi Velchetti Elizabeth Zarrella Hallie Wimberly

Yale Collaborators

Lajos Pusztai Yuval Kluger Leiping Chen

Yale Pathology Tissue Services

Lori Charette Sudha Kumar Veronique Neumeister Yalai Bai (Google YPTS)

Outside Yale Collaborators

David Hicks (U Rochester) Edith Perez and NCCTG George Fountzilas – HeCOG Amanda Psyrri – HeCOG Konstantine Kalogeras -HeCOG

Work supported by grants from the NCI, DOD, BCRF, and the Susan G Komen Foundation for the Cure

Rimm Lab, Fall 2014

www.tissuearray.org

Methods

Tissue Microarray slide submitted for staining in 4 different labs Lab1 = Research Histology Labs 2-4 = Anonymous CLIA labs

4 cuts from Yale TMA 49-9: A cohort of nearly 600 cases from 1962-1982, less than 2% treated with endocrine therapy, node negative treated with surgery alone

Each slide scanned with Bioimagene scanner read by 2 pathologists (MH and DLR) and 1 grad student (AW)

Lab-to-Lab Discordance

Lab3

Some labs show "false negative" results compared to other labs

Serial section Reproducibility for Domain Specific antibodies

Extra-Cellular Domain (SP3)

Intra-Cellular Domain (CB11)

Using Spectrum/Aperio scores from Membrane/Total pixel count for HER2 CB11

Using Joinpoint to Assess Ab Sensitivity and Specificity to Predict FISH amplification in YTMA 263 (Chromogenic IHC)

HER2 antibody	Joinpoint cut-point (AU)	Sensitivity (%)	Specificity (%)	Positive predictive value (%)	Negative predictive value (%)
CB11	71.65	96.3	64.29	63.41	96.43
SP3	75.75	89.66	82.61	76.47	92.68