

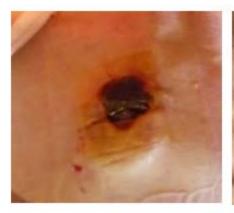
### St. Jude Medical Nanostim Leadless Pacemaker

Presentation to the Circulatory System Devices Panel February 18, 2016

#### Introduction

#### Mark Carlson, MD

Chief Medical Officer and VP Global Clinical


Affairs, St. Jude Medical

Adjunct Professor

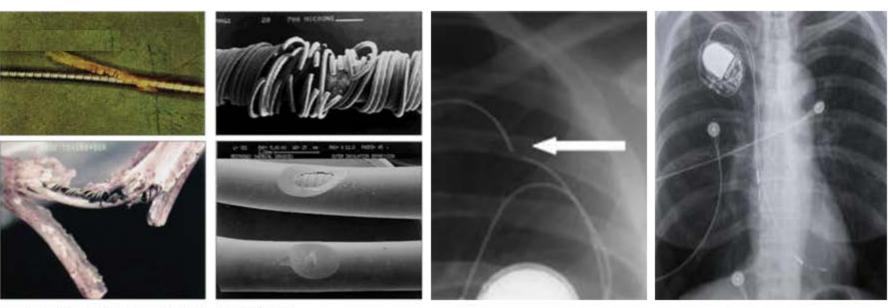
Case Western Reserve University

### Leadless Pacemaker Rationale for Development: Eliminate Issues with Pacemaker Pockets

- Discomfort (1.9%)<sup>1</sup>
- Cosmetic concerns
- Hematomas (3.0%)<sup>1</sup>
- Infections (2.7%)<sup>1</sup>

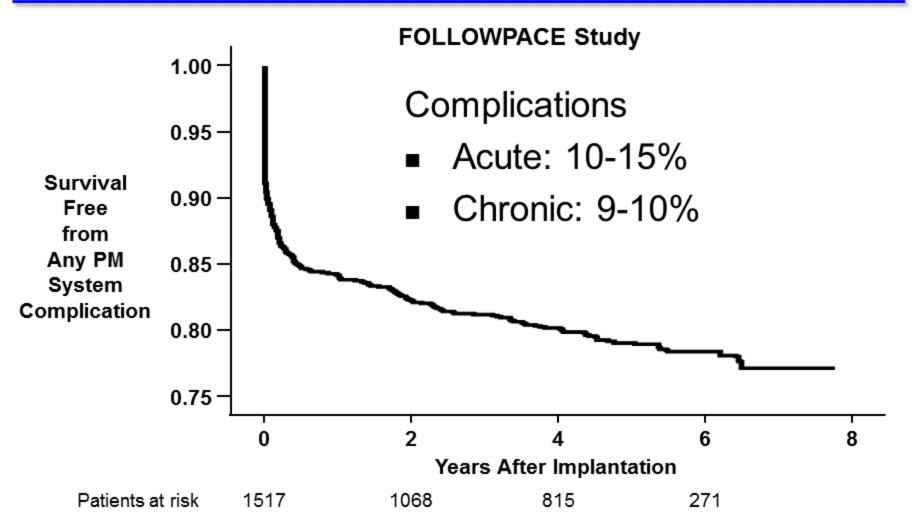









<sup>1</sup> Udo et al, Heart Rhythm 9:728 -735 (2012)


### Leadless Pacemaker Rationale for Development: Eliminate Issues with Pacemaker Leads

- Mechanical failures (1.5%)<sup>1</sup>
- Infections (0.2%)<sup>1</sup>
- Mobility restrictions



1 Udo et al, Heart Rhythm 9:728 -735 (2012)

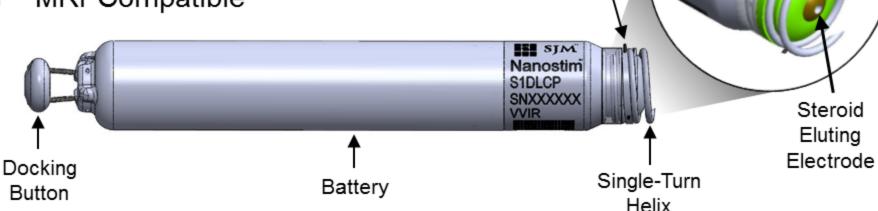
## Substantial Incidence of Acute and Chronic Complications with Standard Pacemakers



Udo et al, Heart Rhythm 9:728 –735 (2012) Note: Includes both single and dual chamber pacemakers

## Description of Device and Procedure

### Today's Leadless Pacemaker System The Nanostim Device


- 42 mm (~1 <sup>2</sup>/<sub>3</sub>") long
- 6 mm (~¹/₄") wide
- Percutaneous femoral vein delivery
  - 18F introducer
  - Steerable catheter
- Self-contained in ventricle
  - No lead or surgical pocket
- Provides traditional single chamber pacing therapy in patients clinically indicated for VVI(R) pacemaker therapy



FDA Question Q4

### Today's Leadless Pacemaker System The Nanostim Device

- Single-turn helix and short stabilizing nylon tines secure fixation
- Steroid eluting electrode
- Temperature-based rate response
- Long battery life (8-18 years)
- Catheter-based retrieval
- Magnet Mode
- MRI Compatible\*



Stabilizing Nylon Tines

<sup>\*</sup> MRI compatibility test results submitted in PMA

### Leadless Pacemaker System Implantation Procedure

THIS IS A 40 SECOND VIDEO OF THE IMPLANT PROCEDURE

### **Agenda**

### Safety and Effectiveness for Leadless II Study

#### Vivek Reddy, MD

Professor of Medicine and Cardiology Mount Sinai Hospital, New York

Nanostim Leadless EU Post Market Study US Post Approval Study Training Program

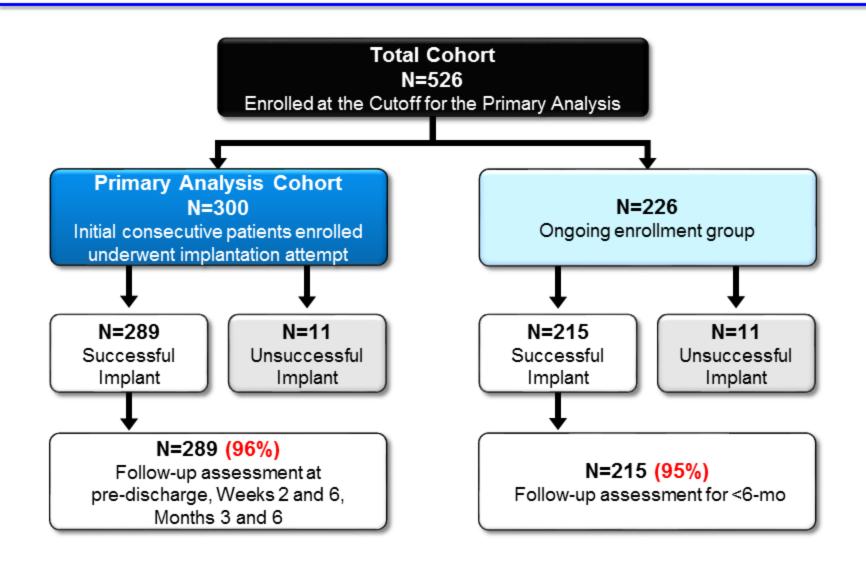
#### Mark Carlson, MD

Chief Medical Officer
St. Jude Medical
Adjunct Professor
Case Western Reserve University

### **Additional Experts**

| Dr. Paul Friedman, MD    | Director – Implantable Device Lab<br>Professor, Medicine<br>Mayo Clinic, Minnesota             |  |
|--------------------------|------------------------------------------------------------------------------------------------|--|
| Dr. Joshua Cooper, MD    | Director – Cardiac Electrophysiology<br>Professor, Medicine<br>Temple University, Pennsylvania |  |
| Barathi Sethuraman, Ph.D | Vice President – Clinical Science<br>St. Jude Medical                                          |  |
| Chris Hubbard            | Vice President – Nanostim Technology<br>St. Jude Medical                                       |  |

### Safety and Effectiveness of a Leadless Pacemaker: Leadless II Clinical Trial Results


### Vivek Reddy, MD

Professor of Medicine and Cardiology Mount Sinai Hospital, New York

### Leadless II Clinical Trial Overview

- Prospective, non-randomized
- Single chamber right ventricular pacing in clinically-indicated patients for traditional systems
- 56 Centers in US, Canada and Australia
  - 100 Operators
- N=667
- N=300 for pre-specified primary analysis

# Leadless II Clinical Trial Patient Disposition



## Demographics Reflect Elderly Population With Significant Comorbidities

| Demographic Variable    | Primary<br>Analysis Cohort<br>(N=300) | Total<br>Cohort<br>(N=526) |
|-------------------------|---------------------------------------|----------------------------|
| Mean Age (years)± SD    | 75.7 ± 11.6                           | 75.8 ± 12.1                |
| Sex - Female            | 35.7                                  | 38.2                       |
| Coronary Artery Disease | 40.3                                  | 38.2                       |
| Hypertension            | 84.0                                  | 79.8                       |
| Diabetes Mellitus       | 27.3                                  | 27.3                       |
| Anticoagulants          | 60.0                                  | 58.9                       |
| Antiplatelets           | 47.7                                  | 47.0                       |

### **Key Procedural Characteristics**

| Procedural Characteristics               | Primary<br>Analysis Cohort<br>(N=300) | Total<br>Cohort<br>(N=526) |
|------------------------------------------|---------------------------------------|----------------------------|
| Successful implantation - n (%)          | 289 (96.3%)                           | 504 (95.8%)                |
| Device Repositioning                     |                                       |                            |
| None                                     | 68.9%                                 | 70.2%                      |
| 1                                        | 18.3%                                 | 17.7%                      |
| 2                                        | 8.3%                                  | 7.7%                       |
| >2                                       | 4.5%                                  | 4.4%                       |
| Final Device Position in Right Ventricle |                                       |                            |
| Apical                                   | 48.4%                                 | 38.1%                      |
| Septum                                   | 51.6%                                 | 60.7%                      |
| Other                                    | 0                                     | 1.2%                       |

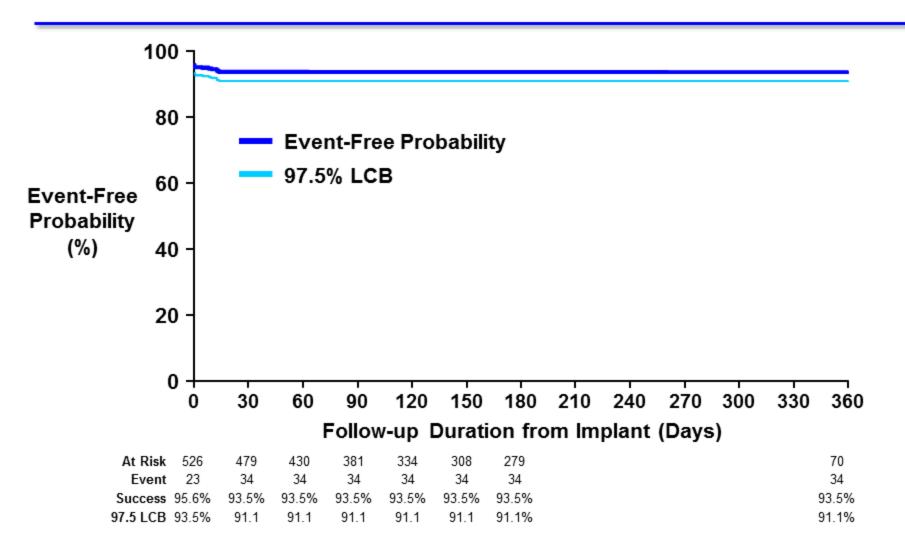
# Primary Effectiveness and Safety Endpoints Achieved

|                                                                      | Population | P-Value |  |
|----------------------------------------------------------------------|------------|---------|--|
| Effectiveness: Acceptable pacing capture threshold AND               | ITT        | 0.007   |  |
| Therapeutically acceptable sensing amplitude at 6 months             | Implanted  | <0.001  |  |
| Safety: Freedom from Serious Adverse Device Effects through 6 months | ITT        | <0.001  |  |

#### **Serious Adverse Device Effects**

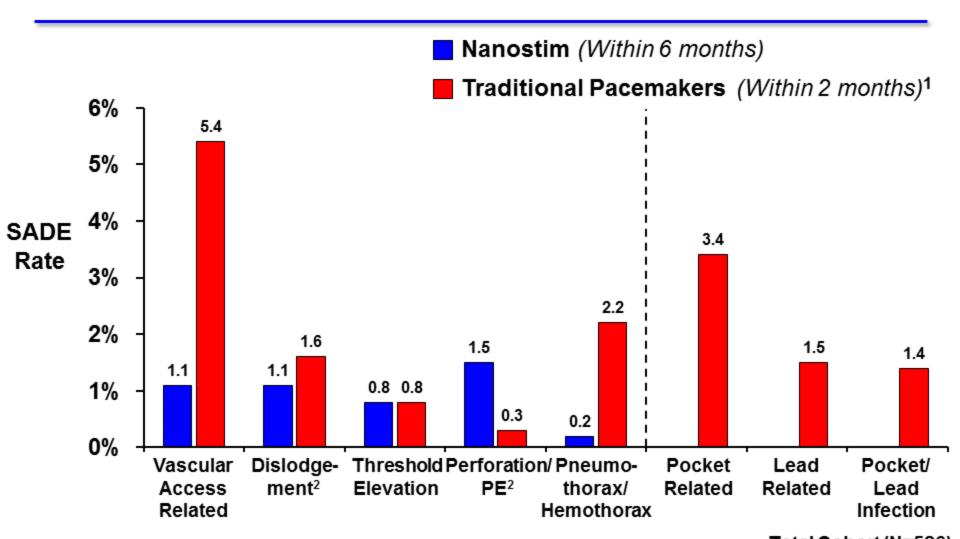
|                               | Analysis | Primary<br>Analysis Cohort<br>(N=300) |    | Total<br>Cohort<br>(N=526) |  |
|-------------------------------|----------|---------------------------------------|----|----------------------------|--|
| Serious Adverse Device Effect | n        | %                                     | n  | %                          |  |
| Total Patients                | 20       | 6.7                                   | 34 | 6.5                        |  |
| Cardiac perforation           | 4        | 1.3                                   | 8  | 1.5                        |  |
| Vascular complications        | 4        | 1.3                                   | 6  | 1.1                        |  |
| Device dislodgement           | 5        | 1.7                                   | 6  | 1.1                        |  |
| Pacing threshold elevation    | 4        | 1.3                                   | 4  | 0.8                        |  |
| Other                         | 4        | 1.3                                   | 13 | 2.5                        |  |

Other Events included: Arrhythmia during device implantation, Intra-procedural device migration, Orthostatic hypotension with weakness, Pericarditis, presumed Pulmonary embolism, Hemothorax, Angina pectoris, Acute confusion and expressive aphasia, Dysarthria and lethargy after implantation, Contrast-induced nephropathy, Left-leg weakness during implantation, Ischemic stroke


# **Events of Interest: Cardiac Perforation and Vascular Complications**

- Cardiac perforation (N=8)
  - 3 with surgical intervention
  - 2 with percutaneous intervention
  - 3 no intervention
    - 1 received traditional pacemaker
- Vascular complications (N=6)
  - 2 Access Site Hematoma
  - 2 Pseudoaneurysms
  - 1 AV Fistula
  - 1 Vascular Closure Malfunction

## Events of Interest: Dislodgement and Retrieval


- Device dislodgement (N=6)
  - All reported in early post-op period (1 - 14 days)
  - All devices retrieved without issue
- Pacing threshold elevation with retrieval and new implantation (N=4)
  - All devices retrieved without issue

### Freedom from SADEs: SADEs Occurred Within First Few Weeks of Procedure. No late SADEs.

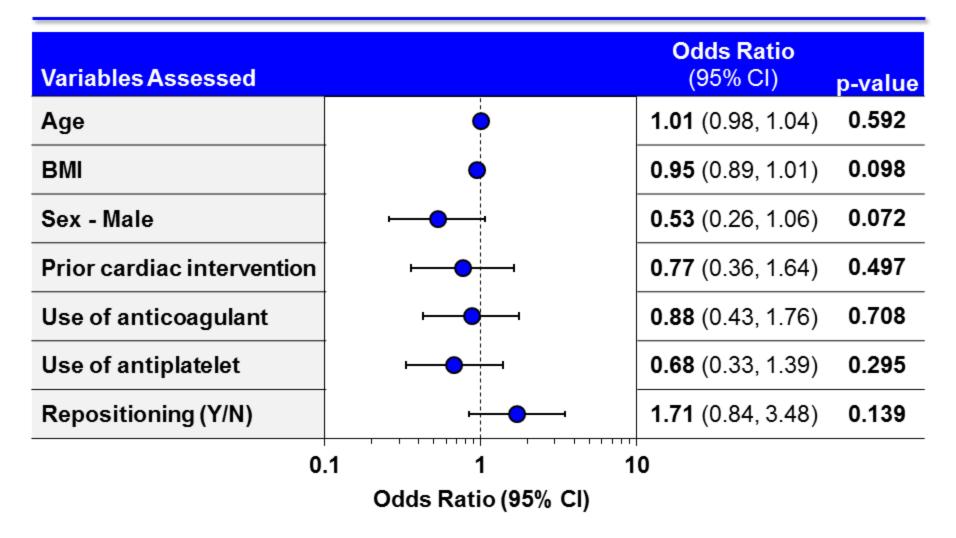


**FDA Question** 

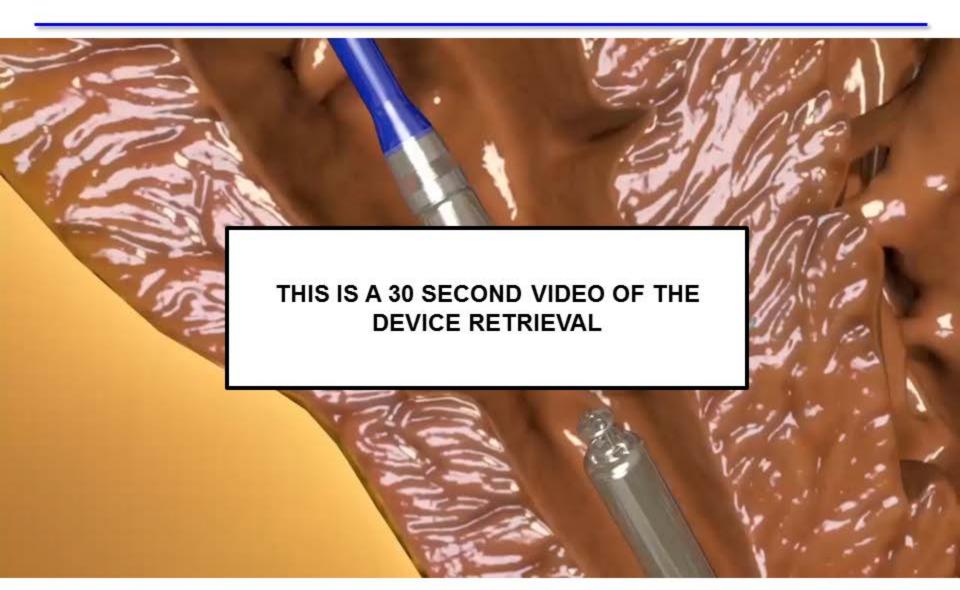
#### Comparison of SADE Rates Q1.A Nanostim vs. Traditional Pacemakers



<sup>&</sup>lt;sup>1</sup> Udo et al, *Heart Rhythm* 9:728 –735 (2012)


Total Cohort (N=526)

<sup>&</sup>lt;sup>2</sup> Perforation and dislodgement for VVI pacemakers only; other data include single and dual chamber pacemakers


### Procedure Related Mortality Adjudicated by Independent CEC

- No intraprocedural deaths
- 3 deaths (0.6%) adjudicated as procedure related
  - 71 y.o. with cancer, respiratory arrest during implant (abandoned), required tracheotomy, made DNR, expired ~2 weeks later
  - 89 y.o., successful implant, right groin hematoma, discharged home, expired ~ 2 weeks later
  - 74 y.o., right atrial perforation, implant abandoned, large MCA stroke 2 days later and expired

### No Significant Predictors of SADEs



### **Retrieval Animation**



### Retrieval of Implanted Devices: 7 Retrievals, 100% Success Without SADEs

- Retrieval an important capability
- Time from implant to retrieval
  - Average 160 ± 180 days (Median = 100)
  - Range 1 413 days
- Reasons for retrieval
  - Elevated pacing thresholds (n=4)
  - CRT implantation (n=2)
  - Elective explant (n=1)

### **Leadless II Clinical Trial Summary**

- Successfully implanted in ~96% of patients
- Trial met pre-specified Safety and Effectiveness endpoints
- Complication rate similar to conventional pacemakers
- Device is retrievable

### Nanostim Leadless EU Post Market Study US Post Approval Study Training Program

#### Mark Carlson, MD

Chief Medical Officer and VP Global Clinical

Affairs, St. Jude Medical

Adjunct Professor

Case Western Reserve University

### Learnings and Enhancements from the EU Post Market Study

- Enhanced patient selection criteria
- Required high resolution fluoroscopy
- Recommended septal rather than apical implants
- Enhanced training program

## EU SADE Rate Decreased After Changes From Key Learnings Were Implemented

|                                             | EU Post Market Study     |     |                          |     |
|---------------------------------------------|--------------------------|-----|--------------------------|-----|
|                                             | Pre-Learnings<br>(N=147) |     | Post-Learnings<br>(N=93) |     |
|                                             | %                        | %   | n                        | %   |
| Cardiac perforation or pericardial effusion | 6                        | 4.1 | 2                        | 2.2 |
| Device dislodgement                         | 2                        | 1.4 | 0                        | 0.0 |

### **U.S. Post Approval Study**

## U.S. Post Approval Study Overview (1 of 2)

- Prospective
- Non-randomized
- Multi-center
- Acute and long term safety including
  - Complications and success rate of removal/extraction
- Primary endpoint:
  - Freedom from Complication

FDA Question Q2.C.iii

FDA Question Q2.B.ii

# U.S. Post Approval Study Overview (2 of 2)

- Data collected at:
  - Implant
  - Pre-discharge
  - Two weeks and
  - Semi-annually for 7 years
- Patient management at time of device replacement or deactivation
  - 30 day post replacement with traditional pacemaker
  - Continued follow up if replaced with Nanostim

FDA Questions Q2.A.i Q2.B.iv

FDA Questions Q2.B.i Q2.C.i Q2.C.ii

# Post Approval Study Overview Sample Size

FDA Questions Q2.A.i Q2.B.i Q2.B.ii Q2.B.iii Q2.C.i

- 1,700 patients
- Design allows for early and late AEs to be estimated to within a 90% CI width of 1%
- Study to include Leadless II and newly enrolled patients clinically indicated for single chamber pacing therapy

### Mandatory Nanostim Physician Training Program

### **Prerequisite Requirements**

- Qualified for pacemaker implantation
- An established practice affiliation with institution that has:
  - Resources to support implantation
  - High resolution fluoroscopy equipment
  - Proper emergency facilities for cardioversion, defibrillation, pericardiocentesis and cardio-pulmonary resuscitation

## 7-Module Training Program Comprehensive Content

- Didactic Training / Patient Selection (Module 1)
- FDA Question Q3

- Hands-on Training
  - Implant Demonstration (Module 2)
  - Animal Lab Training (Module 3) or Virtual Reality Training (Module 5)
- Video Compendium Review (Module 4)
- Site-Training and onboarding, Case Observation,
   Technical and Implant Support and In-case Training provided by SJM certified personnel (Modules 6 and 7)

### Virtual Reality Reinforcing Correct Technique

- Benefits over animal lab
- Virtual reality demonstrates:
  - Catheter handle operations
  - Procedural steps
  - Best and worst practices
  - How to avoid complications
- Provides real-time critical warning messages and feedback

## 7-Module Training Program Comprehensive Content

- Didactic Training / Patient Selection (Module 1)
- Hands-on Training
  - Implant Demonstration (Module 2)
  - Animal Lab Training (Module 3) or Virtual Reality Training (Module 5)
- Video Compendium Review (Module 4)
- Site-Training and onboarding, Case Observation,
   Technical and Implant Support and In-case Training
   provided by SJM certified personnel (Modules 6 and 7)

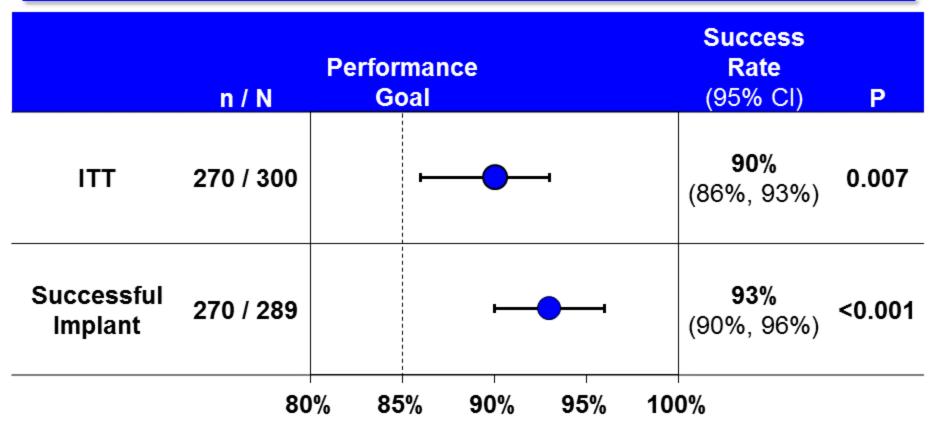
# Physician Certification Contingent on Completion of Training Program

- Physician Certification received after successful completion of
  - All modules
  - 10 procedures with technical and implant support and in-case training provided by SJM certified personnel

#### **Summary**

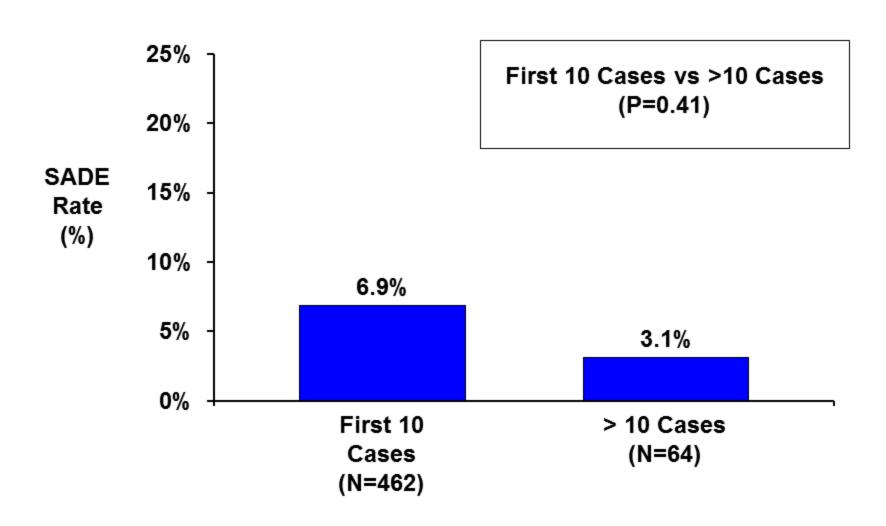
- Complication rates similar to alternative therapies
- Absence of longer-term SADEs
- Absence of certain complications associated with standard pacemakers
- Robust training program will support safe use
- Event rates will continue to be monitored in post-approval study




#### St. Jude Medical Nanostim Leadless Pacemaker

Presentation to the Circulatory System Devices Panel February 18, 2016

# **Changes to Transfer Nanostim Learnings**


| Lessons Learned                                                                                               | Action Taken                                                                                                                                   |  |  |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Nanostim used as device of last resort                                                                        | Align inclusion/exclusion criteria with IDE study. Stress care during patient selection by SJM field personnel                                 |  |  |
| All perforations were associated with RV apical implants                                                      | Placement in lower septum                                                                                                                      |  |  |
| Quick rotation may cause catheter to torque and over-rotate                                                   | Slowly rotate catheter with pauses, 1-1 ¼ turns rather than 1¼                                                                                 |  |  |
| Pressure on the endocardium increases if protective sleeve is not fully retracted and if the catheter buckles | Fully pull back protective sleeve before engaging endocardium and apply forward pressure gently so the device is moving with the cardiac cycle |  |  |
| COI associated with active fixation leads, associated with higher initial thresholds                          | Wait up to 20 mins for COI to resolve                                                                                                          |  |  |
| Suboptimal imaging equipment contributed to at least one cardiac perforation                                  | Sites were required to use high resolution fluoroscopy equipment for implantation                                                              |  |  |
| Presence of an existing perforation before device implant was observed in at least one case                   | IFU warning added to not implant device in presence of an existing perforation                                                                 |  |  |

### Primary <u>Effectiveness</u> Endpoint Surpassed the Performance Goal

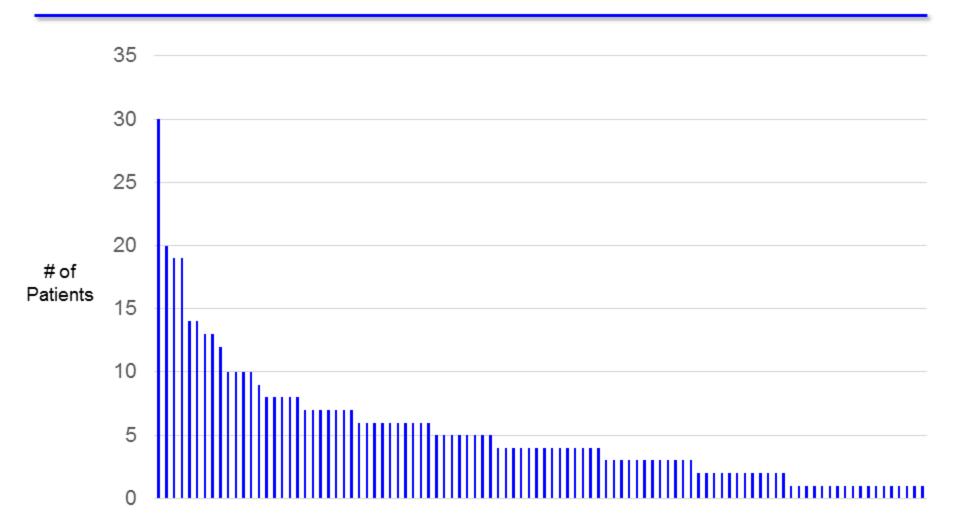


Percent Achieving Primary Effectiveness Endpoint

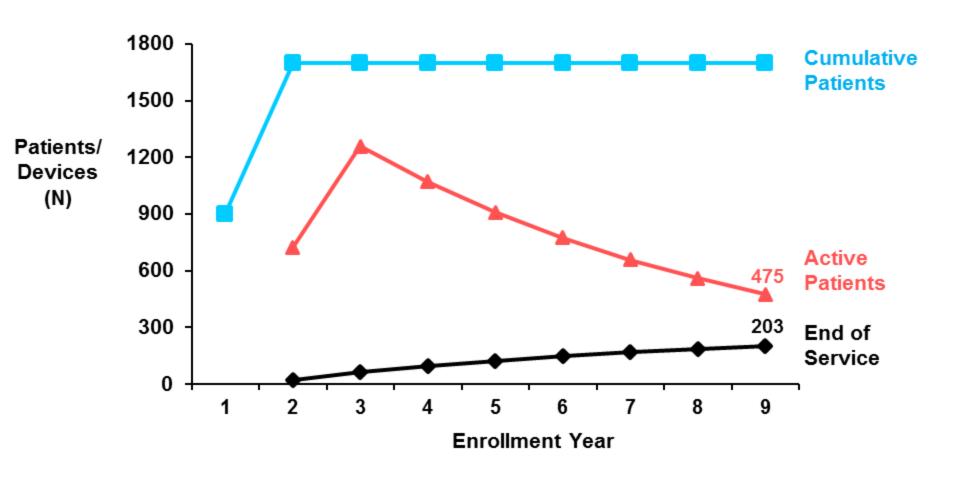
#### SADE Rate First 10 Cases vs >10 Cases



#### Threshold Elevation (N=4)


- Patient #1
  - Elevated Pacing Threshold at Implant
  - 2-week visit (Device reprogrammed)
  - 100 days post implant-LP retrieved and replaced with another LP
- Patient #2
  - Elevated Pacing Threshold at implant
  - The next day- LP retrieved and replaced with another LP
- Patient #3
  - Elevated Pacing Threshold at implant
  - The next day- LP retrieved and replaced with another LP
- Patient #4
  - Elevated Pacing Threshold- 72 hrs. post implant
  - Device Reprogrammed/Temporary pacer placed the following day
  - 23 days post implant-LP retrieved and replaced with transvenous ppm

# Table 3-10: Deaths Classified by CEC Adjudication in Total Cohort


| Cause of Death                                                                               | Number<br>of<br>Patients | Relation to<br>Device or<br>Procedure | Number of<br>Days Post-<br>Implant |
|----------------------------------------------------------------------------------------------|--------------------------|---------------------------------------|------------------------------------|
| Cardiac                                                                                      |                          | -                                     |                                    |
| Arrhythmic                                                                                   | 2                        | Not Related (1);<br>Procedure (1)     | 18, 100                            |
| Heart failure                                                                                | 1                        | Not Related (1)                       | 99                                 |
| Unknown                                                                                      | 1                        | Procedure/<br>Introducer (1)          | 14                                 |
| Non-cardiac                                                                                  |                          |                                       |                                    |
| Accidental gunshot wound                                                                     | 1                        | Not Related (1)                       | 47                                 |
| Renal or liver failure                                                                       | 5                        | Not Related (5)                       | 73, 82, 89, 135,<br>320            |
| Respiratory failure                                                                          | 3                        | Procedure (1)<br>Not Related (2)      | 10, 103, 182                       |
| Multiple organ failure                                                                       | 2                        | Not Related (2)                       | 34, 38                             |
| Ischemic bowel/small bowel obstruction                                                       | 2                        | Not Related (2)                       | 185, 270                           |
| Mixed respiratory and metabolic acidosis                                                     | 1                        | Not Related (1)                       | 176                                |
| Unknown*                                                                                     |                          |                                       |                                    |
| Death- Sudden with antecedent worsening<br>heart failure                                     | 1                        | Not Related (1)                       | 267                                |
| Death- Sudden without antecedent<br>worsening heart failure                                  | 1                        | Not Related (1)                       | 274                                |
| Death-Non-sudden with antecedent<br>worsening heart failure                                  | 2                        | Not Related (2)                       | 18, 42                             |
| Death- Non-sudden with antecedent<br>worsening heart failure status unknown                  | 1                        | Not Related (1)                       | 281                                |
| Death-Unknown (presumed sudden) with<br>no antecedent worsening heart failure                | 3                        | Not Related (2)<br>Unknown (1)        | 5, 69, 126                         |
| Death-Unknown (presumed sudden) with<br>antecedent worsening heart failure status<br>unknown | 1                        | Not Related (1)                       | 219                                |
| Death- Unknown temporal cause and<br>antecedent worsening heart failure status<br>unknown    | 1                        | Not Related (1)                       | 409                                |
| Total                                                                                        | 28                       |                                       |                                    |

<sup>\*</sup> Sudden denth: denth ≤1 hour after onset of symptoms Non-sudden denth: denth: 1 hour after onset of symptoms Denth Unknown (presumed sudden): documentation of patient's condition by a witness within 24hours Denth Unknown: denth where conet of symptoms cannot be determined.

### **Enrollment By Operator**



### PAS - Projection of Patient Enrollment and Device End of Service



Assumes 15% attrition per year and 2.7% end of service per year