Nonclinical Studies – What animal studies can (and can't) tell us about drugs in milk

Tacey E. White, PhD FDA Lactation Workshop 27 – 28 April 2016

Disclosure

I am a regulatory toxicology consultant, advising pharmaceutical companies on non-clinical testing strategies during drug development

Presentation Outline

- DART Testing Requirements
- Studies with lactational animals
- Extrapolation to human risk
 - Drugs in milk across species
- Concluding remarks

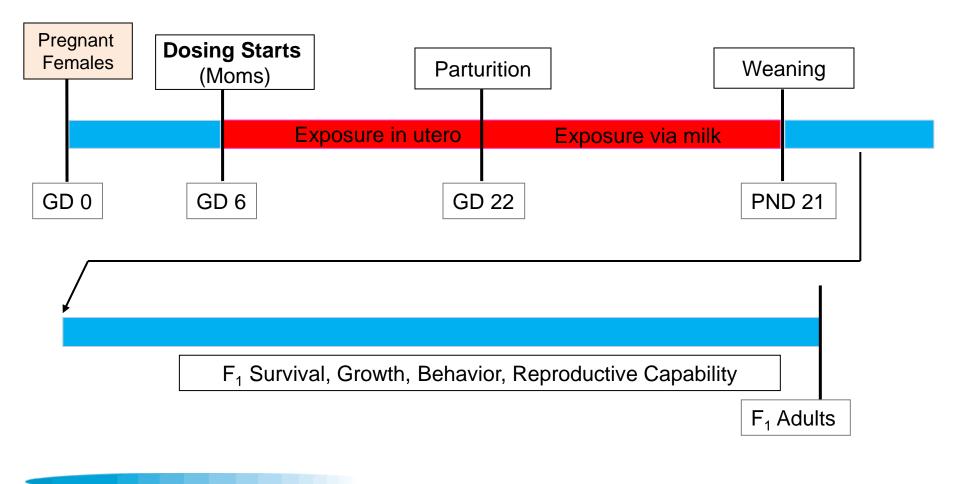
PLLR Requirements

- Risk Summary Lactation
 - Effects on milk production
 - Presence of drug in human milk
 - Effects on the breastfed child
 - Animal data not included if human data exist
 - Animal data, when included, should only state presence or absence of drug in milk

ICH S5(R2): Reprotox Testing Guidelines

Evaluate the entire reproductive life cycle, including the following....

- A. Premating to conception adult male and female reproductive functions, development and maturation of gametes, mating behavior, fertilization
- **B.** Conception to implantation adult female reproductive functions, preimplantation development, implantation
- **C.** Implantation to closure of the hard palate adult female reproductive functions, embryonic development, major organ formation
- **D.** Closure of the hard palate to the end of pregnancy adult female reproductive functions, fetal development and growth, organ development and growth
- **E. Birth to weaning** adult female reproductive functions, neonate adaptation to extrauterine life, preweaning development and growth
- **F.** Weaning to sexual maturity postweaning development & growth, adaptation to independent life, attainment of full sexual function


Standard Study Designs ICH S5(R2)

Α	В	С	D	E	F
Premating to Conception	Conception to Implantation	Implantation to Closure of Hard Palate	Hard Palate Closure to End of Pregnancy	Birth to Weaning	Weaning to Sexual Maturity
Fertility Study - R	odent	→		Denotes Dosing Period	
Embryo-Fetal Development Study (EFD) (2) Rodent, Rabbit (NHP)					
Pre- and Postnatal Development Study Rodent (NHP)]

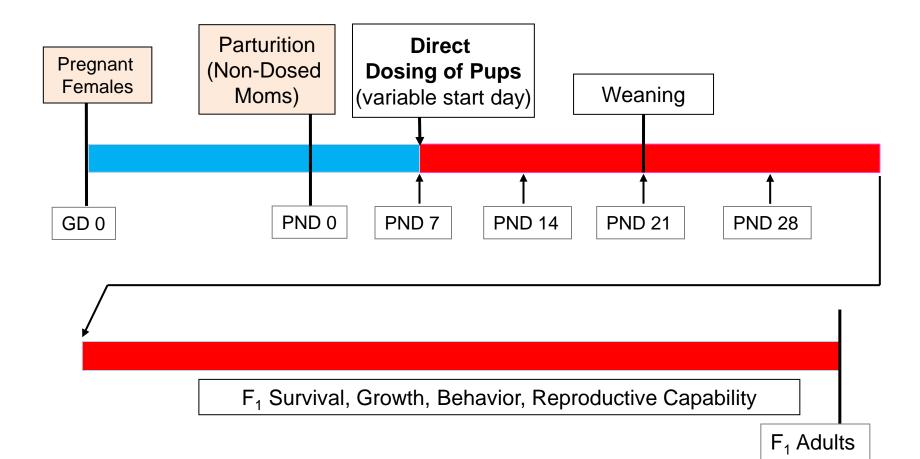
Pre-/Postnatal Development Study in the Rat

Group size = 24 females

PPN Endpoints

F ₀ Mothers	F ₁ Offspring	
Adult Toxicity	Survival	
Gestation, Parturition	Growth	
Lactation <u>Process</u>	Behaviormotor activitylearning and memoryReflex development	
	Reproduction	
(Drug in Milk)	Systemic Exposure	

- Drug in milk <u>not</u> typically measured
- Systemic exposure in nursing pups measured more often, but not universally
- Data in offspring confounded by pre- and postnatal exposure



Juvenile Toxicity Study

- Conducted to support pediatric clinical trials
- Direct dosing to juvenile animals
- Dosing can start as early as newborn
 - But age of dosing will be determined by age of youngest children in clinical trials
- Toxicity and systemic exposure data collected

Juvenile Toxicity Study in the Rat Direct Dosing of Pups

Juvenile Toxicity Endpoints

Juvenile Animals		
Survival		
Growth		
Behaviormotor activitylearning and memoryReflex development		
Reproduction		
Systemic Exposure		

Mothers not dosed – no ability to evaluated drug in milk

Available Nonclinical Data

Pre-Postnatal Study	Juvenile Toxicity Study	
Drug in milk not typically measured	Drug levels in milk not available	
- but it could be		
Offspring exposures are available	Offspring exposures are available	
Juvenile toxicity data exists, but confounded by exposure period	Juvenile toxicity data exists, <u>not</u> confounded by in utero exposure	
	But - age varies at start of dosing, not always applicable to breastfed baby	

No one perfect study to address lactation/ breastfed baby But – data are available!

PLLR Requirements

- Risk Summary Lactation
 - Effects on milk production
 - Presence of drug in human milk
 - Effects on the breastfed child
 - Animal data not included if human data exist
 - Animal data, when included, should only state presence or absence of drug in milk
 - "Due to species-specific differences in lactation physiology, <u>animal</u> <u>lactation data typically do not reliably predict levels in human milk;</u> however, animal lactation data can be helpful in predicting whether a drug and/or its active metabolite(s) will be present in human milk."

Drug Secretion into Milk¹

Mechanisms of Drug Secretion				
Simple diffusion	Carrier-mediated diffusion			
Pinocytosis	Reverse pinocytosis			
Active transport				

Drug Characteristic	Milk/Plasma (M/P) Ratio	
Highly lipid-soluble	~1	
Small, water soluble drugs (MW<200)	~1	
Weak acids and bases	~1	
Highly protein-bound in maternal serum	<1	
Actively transported drugs	>1 or <1	
	(depends on direction)	

¹From: Drugs During Pregnancy and Lactation, Treatment Options and Risk Assessment, 3rd Edition, Schaefer, Peters, Miller, eds.

Species Comparison for Lactation

- Lack of good information in the literature on species differences, in general
- Similarities in hormonal control of milk production
- Species differences:
 - Mammary gland anatomy
 - Storage and release of milk into ducts
 - Protein and fat composition of milk
- Not clear how these factor into drug levels in milk
- Drug concentration cross-species comparisons lacking

Ito et al., 2013 Study

Pharm Res, 30:2410-2422

Purpose: Analyze concentrations of 27 drugs in mouse milk and compare to human milk concentrations

Methods:

- Dose mice with implanted micro-osmotic pumps
- Measure M/P ratio, and compare to human M/P ratio
- Compare actual concentrations with those predicted by models using physicochemical parameters of drug¹
- Measure lipid and protein-unbound fractions in mouse and human plasma and milk

¹ Koshimichi (2011) Drug Met Distr, 39:2370–2380

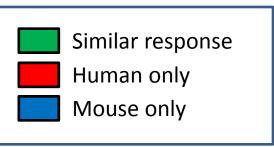
Ito et al., 2013, cont.

Results:

- 1. M/P ratio generally 2-fold higher in mice than humans
 - Unbound M/P ratio similar between mice and humans
 - Difference predictable based on differences in protein and lipid content in mouse vs. human milk
- 2. 18 of 27 drugs concentrations close to values predicted by pHpartition model, when corrected for protein and lipid differences
 - Suggests drug secretion mediated by diffusion
- 3. 9 of 27 drugs concentrations were not close to predicted values
 - Suggests drug secretion mediated by active transport

Ito et al., 2013, cont.

- Higher M/P than predicted:
 - Cimetidine, clindamycin, aclycovir, terbutaline
 - Suggests active transport BCRP (ABC) or other
- Lower M/P than predicted:
 - Cefotaxime, trazodone, metformin, tripolidine, verapamil
 - Suggests absorptive reuptake transport



Ito et al., 2013, cont.

- Higher M/P than predicted:
 - Cimetidine¹, clindamycin, aclycovir, terbutaline
 - Suggests active transport BCRP or other
- Lower M/P than predicted:
 - Cefotaxime, trazodone, metformin, tripolidine, verapamil
 - Suggests absorptive reuptake transport
- Considerable species differences

¹Dostal 1990, McNamara 1992, Oo 1995

Conclusions – Animal to Human Extrapolation

- Animal studies can generate data on lactation, drugs in milk, and health of newborn
- Lactation cross-species extrapolation possible
- Health of breast-fed child
 - Data can be generated on exposures and toxicity in offspring
 - Risk assessment based on animal data is possible
 - Human studies would be best, but could be difficult
 - Animal data might be useful in absence of clinical data

Conclusions, conc.

- Drug concentrations in milk
 - Gaps exist in our knowledge of cross-species concordance
 - Species differences exist in composition of milk, secretory processes, etc.
 - Drugs that diffuse extrapolation possible (M/P ratio)
 - Drugs secreted by active transport need more data
 - Biggest gap how to tell which category the drug falls into
 - Increased urgency for human lactation studies
 - Closing data gaps could facilitate extrapolation in future
- PLLR clarity needed around expectations for generating and using animal data in Lactation Section

