MCH Water Path & Airflow Design

Cleanability, Compatibility, Compliance, Communication

Presenters

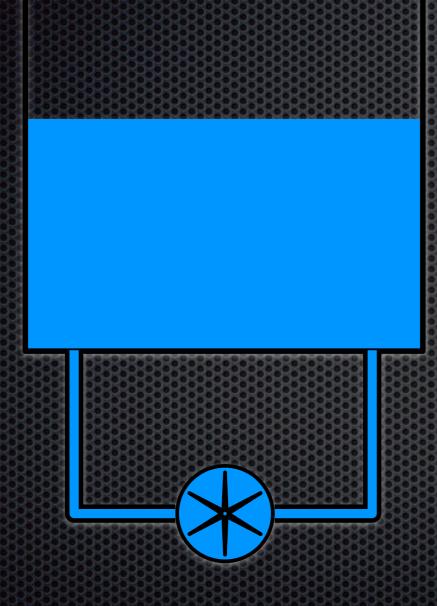
Douglas E. Platt, Partner

- * 25+ years experience servicing & refurbishing perfusion equipment
- Two patents in cooler-heater design

Jon L. Gardner, Chief R&D Engineer

- * 8 years experience with perfusion equipment
- One patent in cooler-heater design
- Fifth-generation medical professional

CardioQuip MCH-1000


 Same hardware, software, & design

 Different tank sizes for different cooling needs

Open vs. Closed Water Path

Open Water Path Design

- No inaccessible airspace to harbor microbes
- Water-borne disinfectants contact all wetted components
- Tank is easy to inspect & clean

Cleaning Protocol

- Regular inspection
- Add disinfectant & circulate
- Wipe/scrub the tank
- Flush & fill twice
- Wipe down external surfaces

Cleaning Protocol Validation

- Fill device with contaminated water
- Sample water for HPC testing (pre-cleaning)
- Perform cleaning procedure
- Sample water for HPC testing (post-cleaning)
- Evaluate "cleanability"
 - * Objective: time required, inspection results
 - Subjective: ease of inspection & cleaning

Validation Results

The MCH is easy to clean

The cleaning protocol is effective

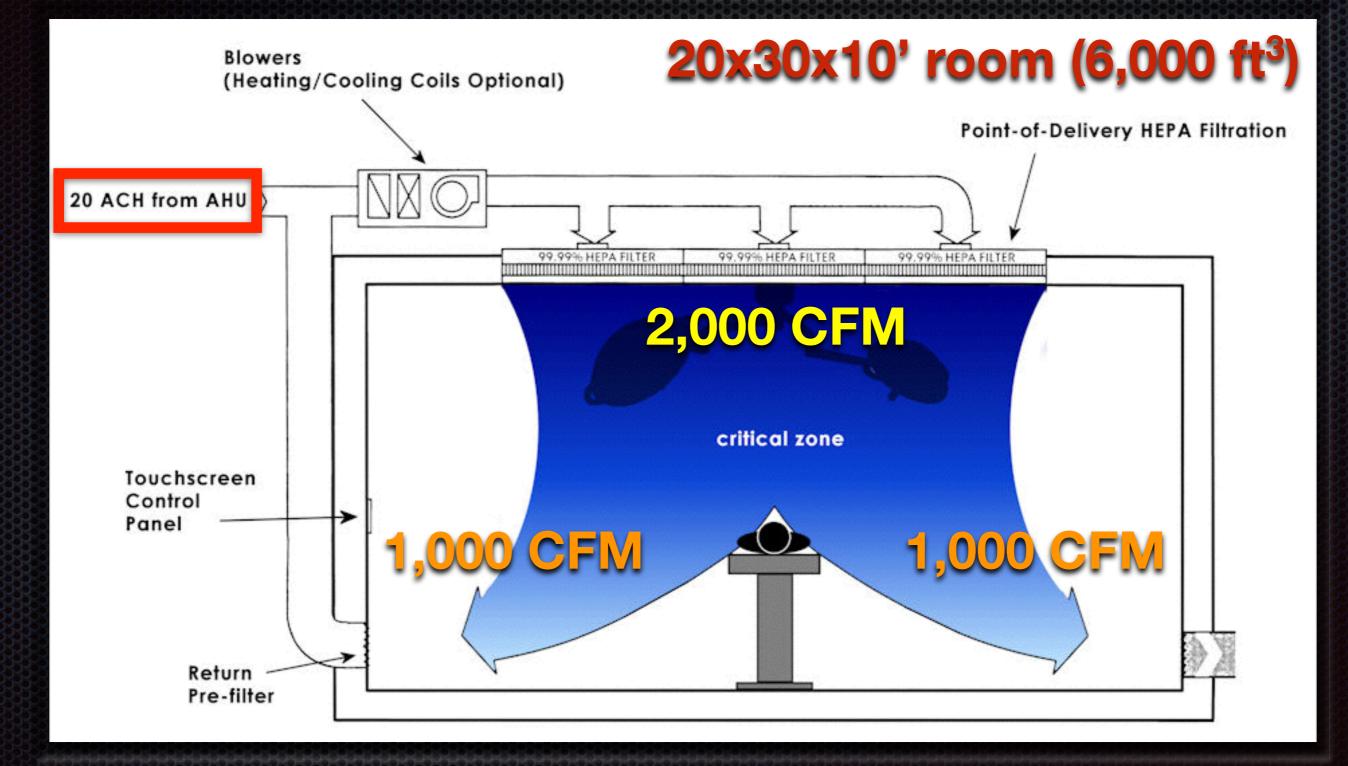
)<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0	MOKOKOKOKOKOKOKOKO
Disinfectant	CFU/mL (Pre)	CFU/mL (Post)
PineSol™	15,100	4.0
Chlorine Bleach (5%)	2,570	60.0
Hydrogen Peroxide (3%)	1,770,000	9.3
MinnCare™ (22% H ₂ O ₂ , 5% Peracetic Acid)	195,000	<200

Why Use Water?

- Regulatory history
- Materials compatibility
- Similarity to blood
- Superior performance

Water Risk Mitigations

- Valved connectors
- Dripless hose kits
- Anti-microbials
- Education



The Other Factor to Mitigate:

Surgical Ventilation System

Factors for Airflow Validation

- Analyze with respect to Surgical Ventilation System standards (ASHRAE 17-2008, ISO 14644-3 et al)
- Consider airflow & history of similar devices

Airflow Validation

- Standard unit: ~50 CFM fan, bottom intake/exhaust
- Optional Refrigeration Module: front/ rear intake, side exhaust, ~300 CFM (~150 CFM per side), smoke tested

Airflow Validation

- Compact unit: ~50 CFM fan, bottom intake, side/rear exhaust
- Optional Thermo-Electric Cooling Module, front/rear intake, side exhaust, ~100 CFM (~50 CFM per side)

Summary

Water Quality Airflow

"Cleanability" Effectiveness

Risk Assessment Mitigation Communication Education

Contact Info

- CardioQuip, LP
 - * 🖉 979-691-0202
- Douglas E. Platt, Partner
 - * dplatt@cardioquip.com
- Jon L. Gardner, Chief R&D Engineer
 - * jon@cardioquip.com

www.cardioquip.com

ardioQu