Controlled Human Malaria Infection Trials (CHMI)

FDA Public Workshop—Clinical Trial Design Considerations for Malaria Drug Development

Jim Kublin, MD, MPH

Medical Director, Seattle Malaria Clinical Trials Center

Thursday, June 30, 2016

CHMI Support of Product Development

Target Product Profiles

- Preventive
- Therapeutic

Method of infection

- Infected mosquito
- Direct Venous Inoculation

Method of diagnosis

- Nucleic acid tests
- Rapid diagnostics
- Thick blood smear

Method of product administration

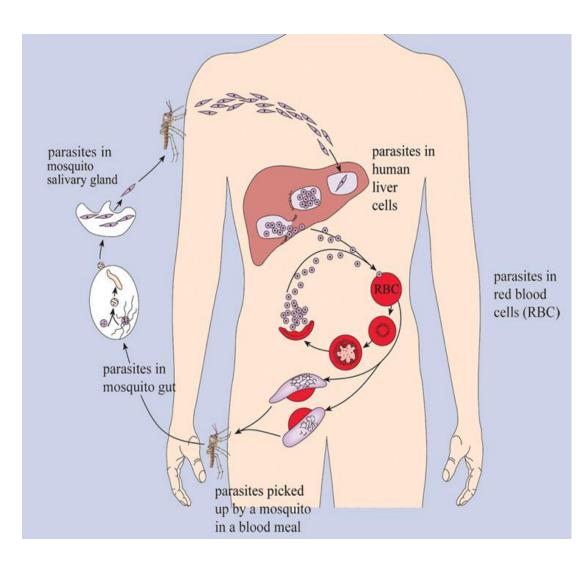
- Dose (de)-escalation
- Time-shift
- Vaccine via IV, IM, ID, regimen optimization

Opportunities for discovery

- Protective phenotypes
- Antigen selection

Target Product Profile

Preventive


- Pregnant women and children in endemic settings
- Travelers
- Military
- Post exposure prophylaxis
- Repeat exposures

Therapeutic

- Plasmodia species
- Control of severe disease
- Control of further transmission
- In combination with other drugs
- Concurrent infections

Human Malaria Infection

Caused by a parasite Plasmodium

Five *Plasmodium* species:

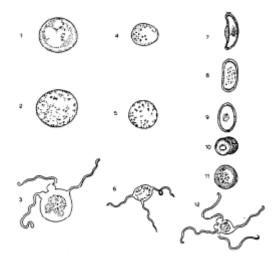
- P. falciparum
- P. vivax
- P. ovale
- P. malariae
- P. knowlesi
- P. brasilianum

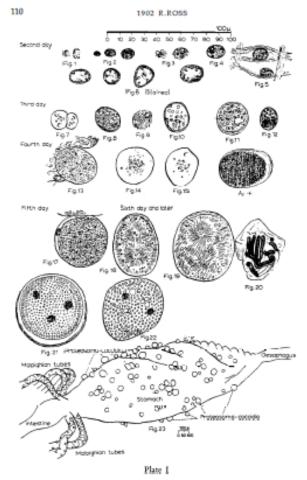
Complex life cycle with many parasite forms and stages.

Transmitted by mosquito.
Only mosquitoes can spread the parasite to another human.

Malaria is not infectious from person to person. You cannot give malaria to someone else.

Image from Open Learn Lab Space which was Adapted from: The Open University, 2003, Infectious Disease, Book 5: Evolving Infections, Figure 3.4)


http://labspace.open.ac.uk/mod/oucontent/view.php?id=439264&extra=thumbnail_id398021309758


Breakthroughs for Human Challenge

The Nobel Prize in Physiology or Medicine 1902

Ronald Ross

"for his work on malaria, by which he has shown how it enters the organism and thereby has laid the foundation for successful research on this disease and methods of combating it".

Breakthroughs for Human Challenge

The Nobel Prize in Physiology or Medicine 1927
Julius Wagner-Jauregg

"for his discovery of the therapeutic value of malaria inoculation in the treatment of dementia paralytica"

This discovery led to the testing of patients for syphilis at the former London Asylum that same year using the Wassermann test. In 1921, of 1131 patients tested, slightly over 10% were discovered to have syphilis. The malarial treatment of neurosyphilis was widespread by the 1930s, and continued to be used until the introduction of penicillin in the 1940s.

Treatment for Neurosyphilis / Pf

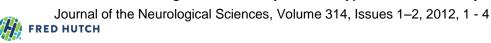



Fig. 1 Year cohorts versus frequency for types of treatment used at the Boston City Hospital.

Diana Patterson, Joel A. Vilensky, Wendy M. Robertson, Joseph Berger

Treatment and diagnostic accuracy of neurosyphilis at Boston City Hospital's Neurological Unit, 1930-1979

What is CHMI?

Controlled human malaria infection (CHMI) is now used to test vaccines and drugs, as well as to examine physiological and immunological responses to malaria parasites.

- Sporozoite-induced malaria infection (SIM)
 - Via direct venous inoculation
 - Via infected anopheles bites
- Induced blood stage malaria infection (IBSM)

Parameter	SII	IDCM		
Parameter	PfSPZ Challenge	Anopheles	IBSM	
Safety record	3400	>1500	>100	
Risk of introduction of				
adventitious agents	Minimal	Minimal	Possible	
Ability to vary size of				
inoculum	+++	+	+++	
Knowledge of size of				
inoculum	+++	+/-	+++	
			Cryopreserved	
Logistical ease	LN2, transport, DVI	Need for insectary	blood	
Availability	Sanaria	Widespread	Limited	
			Limited to	
Life cycle stages amenable			erythrocytic and	
to study	All human stages	All human stages	gametocytes	

Table adapted from Engwerda CR, Minigo G, Amante FH, McCarthy JS. Experimentally induced blood stage malaria infection as a tool for clinical research. Trends Parasitol. 2012 Nov;28(11):515-21.

Methods of Sporozoite-Induced Malaria Infection

Pf Infected Mosquito bite

- Pro
 - Natural route
 - The 'gold standard'
 - Contains the dermal interactions between parasite and people
- Con
 - More expensive
 - Local reactogenicity
 - Implementation challenges
 - Requires a BSL2 insectary
 - Variation in biting behavior
 - May differ when applied to persons from endemic regions

Pf SPZ via Direct Venous Inoculation

- Pro
 - Easier implementation
 - Lower cost
 - More consistent infectious dose?
 - Can achieve same pre-patent period as mosquito bite CHMI
 - No insectary needed
- Con
 - Bypasses the skin immune system
 - Could miss effects of skinconcentrated drugs
 - May or may not be a suitable surrogate of natural infection
 - Many sporozoites are not viable

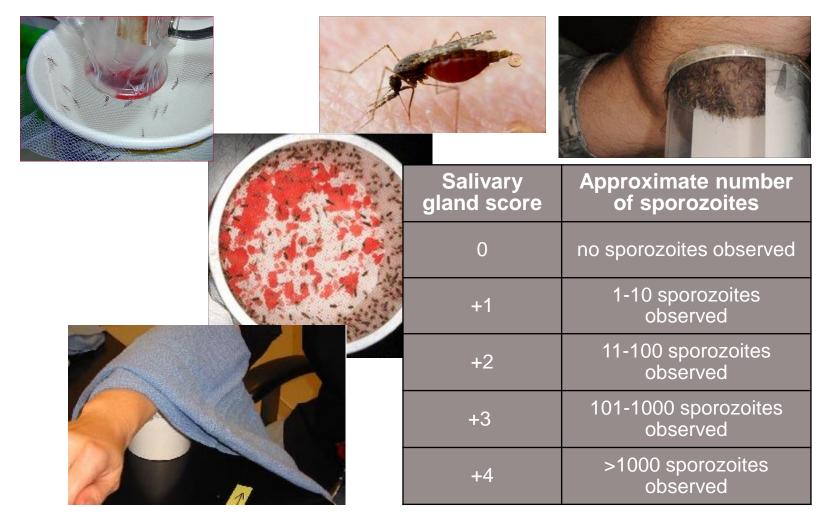
Mosquito Infection

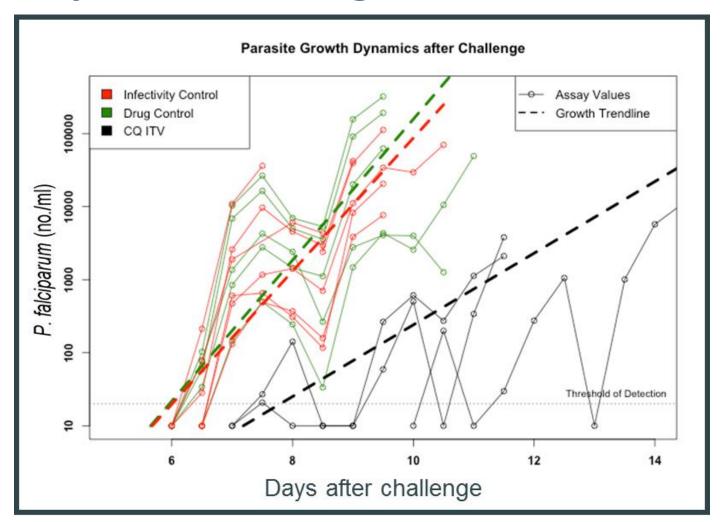
Mosquito cups enter challenge room through pass through

Mosquitoes returned to CeMPMIR post feeding

- Assessed for:
 - Presence of bloodmeal
 - Dissected and assessed for sporozoites
 - Rated using standard 0, 1+,2+,3+,4+ rating

Results recorded on challenge form


Repeat until 5 infected bites at ≥2+ rating achieved



Malaria Challenge

Mosquito Challenge SIM Kinetics

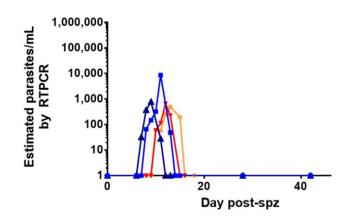


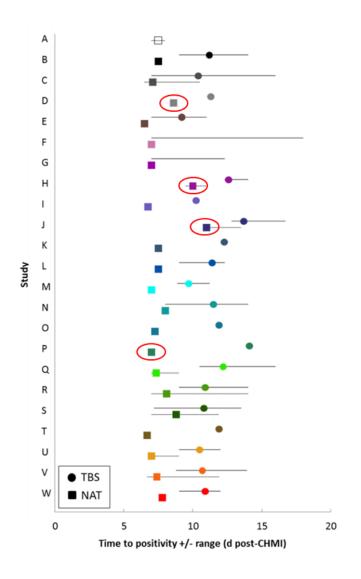
Malaria Challenge via DVI

 Thaw of PfSPZ from LN2 and dilution in PBS

 Direct venous inoculation via tuberculin syringe

PfSPZ Challenge SIM Kinetics


All are Pf Mos except:


D: DVI PfSPZ

H: ID PfSPZ

J: ID PfSPZ

P: IM PfSPZ

CHMI va IBSM

Evaluation of the parasitaemia of the P. falciparum red blood cell banks

- 78%
- 1.5 4.5% rings

Confirmation of the identity

Evaluation of the viability

- P. falciparum 7G8 15%
- P. falciparum NF54 50%

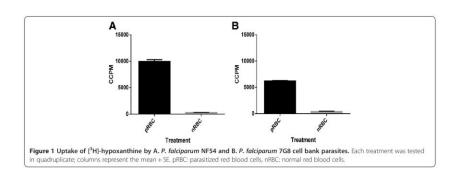
Mycoplasma, endotoxin and viral testing

Identity testing

In vitro anti-malaria drug susceptibility

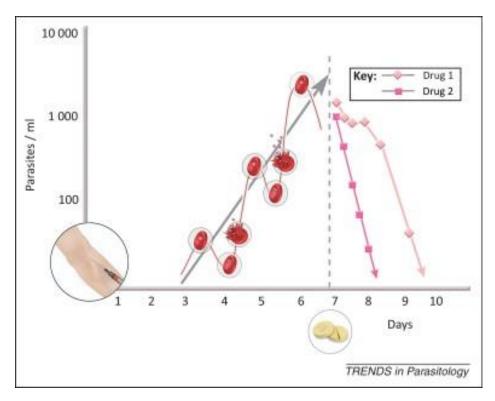
Quality review

Stanisic et al. Malaria Journal (2015) 14:143 DOI 10.1186/s12936-015-0663-x



METHODOLOGY

Open Access


Development of cultured *Plasmodium falciparum* blood-stage malaria cell banks for early phase *in vivo* clinical trial assessment of anti-malaria drugs and vaccines

Danielle I Stanisic^{1*}, Xue Q Liu¹, Sai Lata De¹, Michael R Batzloff¹, Tanya Forbes¹, Christopher B Davis¹, Silvana Sekuloski², Marina Chavchich³, Wendy Chung², Katharine Trenholme², James S McCarthy², Tao Li⁴, B Kim Lee Sim⁴, Stephen L Hoffman⁴ and Michael F Good^{1*}

IBSM Growth Kinetics

Schematic diagram of the course of induced blood stage malaria infection in human volunteers. Parasite counts are typically measured by qPCR following in vivo inoculation with ~1800 infected red cells containing viable ring stage parasites.

Methods of Malaria Diagnosis

Characteristic	RDT	Thin BS	Thick BS	LAMP	PCR	RT-PCR
LoD (1000s para/μL)	100+	100+	5-10	1	0.02	0.02
Volume (μL)	30-50	1-2	5	30	500	50
Turnaround time (hr)	<0.5	<1	<12	1-2	6-24	6-24
High-throughput	-	-	-	+	+	+
Point-of-care	+	-	-	+/-	-	-
Internal control	+	-	-	-	+/-	+
Useful* pooling	-	-	-	+	-	+
Species ID	+	+	-	+**	+	+
Gametocytes	-	+	+	-	-	+
'One-tube' multiplex	+	-	-	-	+	+
Cost	\$\$	\$	\$	\$-\$\$	\$\$\$	\$\$\$

Diagnosis vs. Clinical Symptoms

Prepatent Period (days)

• Mean: 11.2

• Median: 11.0

• Range: 9-14

Incubation Period (days)

• Mean: 9.7

Median: 9.5

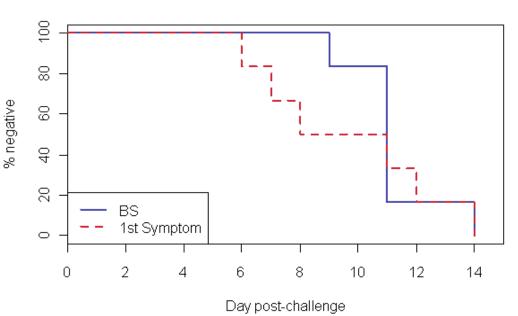
Range: 6-14

Onset of symptoms

Prior to 1st + BS: 3 (50%)

• Day of 1st +BS: 2 (33.3%)

• After 1st +BS: 1 (16.7%)


OPEN ACCESS Freely available online

Safety and Comparability of Controlled Human Plasmodium falciparum Infection by Mosquito Bite in Malaria-Naïve Subjects at a New Facility for Sporozoite Challenge

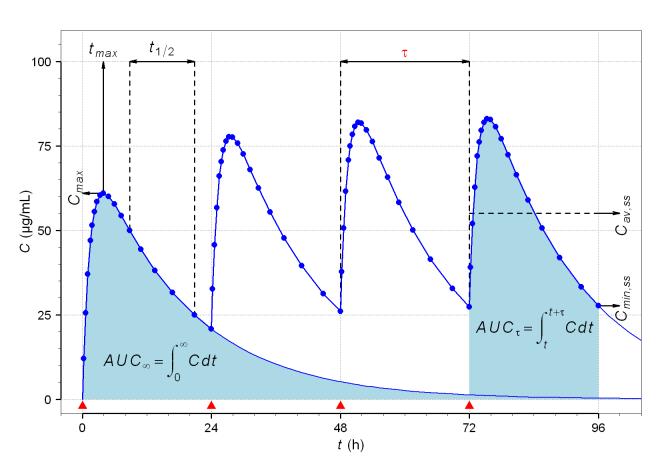
Angela K. Talley¹, Sara A. Healy², Olivia C. Finney¹, Sean C. Murphy³, James Kublin⁴, Carola J. Salas⁵, Susan Lundebjerg¹, Peter Gilbert⁴, Wesley C. Van Voorhis⁶, John Whisler¹, Ruobing Wang¹, Chris F. Ockenhouse⁷, D. Gray Heppner⁷, Stefan H. Kappe¹, Patrick E. Duffy²*

Comparison of Prepatent and Incubation Periods

Product Administration vis a vis CHMI

Preventive/prophylaxis studies

- Time-shift of single administration at a fixed dose prior to CHMI
 - Provides more precision for PK/PD
- Dose de-escalation at a fixed time (or narrow window) prior to CHMI
 - Very informative for further development
- Multiple dose, multiple CHMI
 - Representative of the field


Therapeutic studies

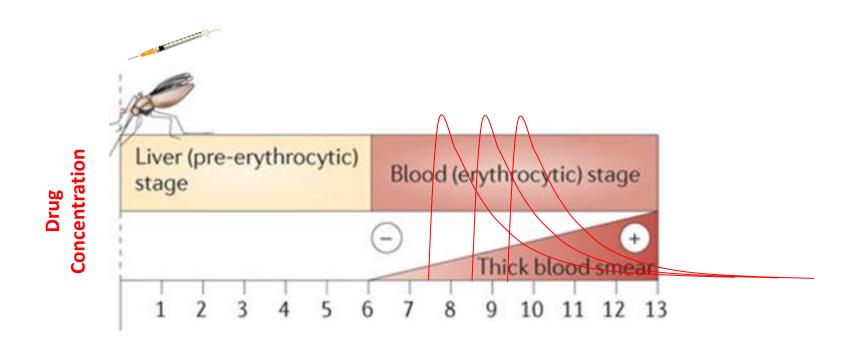
- Dose escalation/de-escalation
- Diagnostic threshold
- Timing of rescue therapy
- Intermittent presumptive therapy
- Combination therapy
- Impact of coinfection on antimicrobial chemotherapy and drug resistance

Method of Product Administration

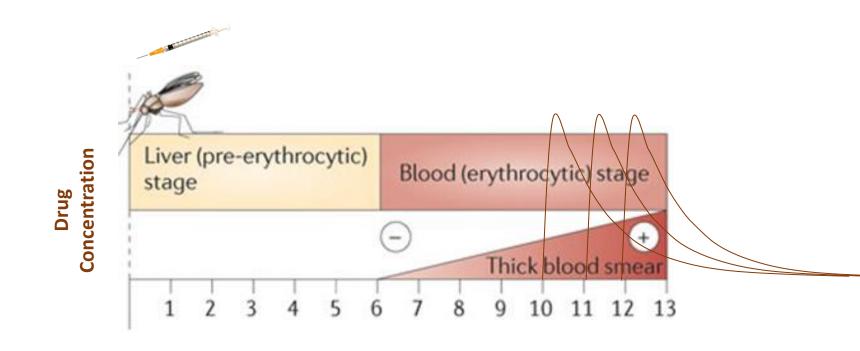
Drugs – Pharmacokinetics

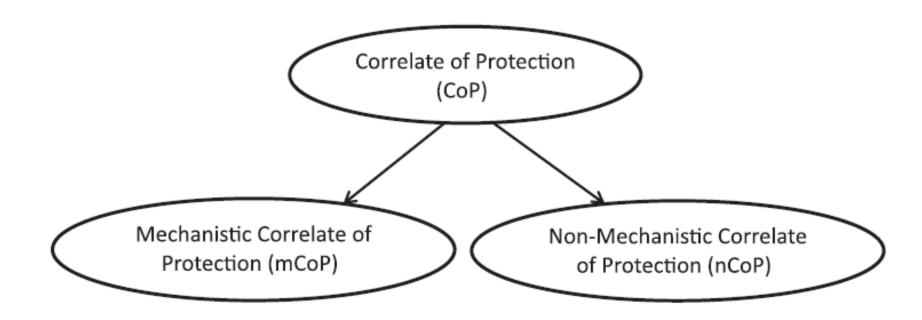
Liberation - release

Absorption - entering the blood circulation.

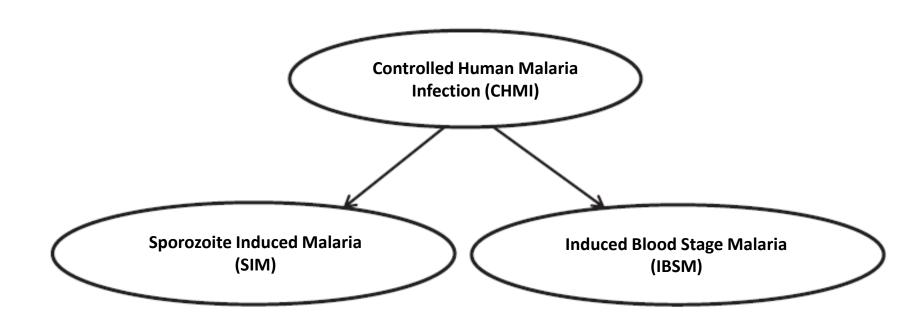

Distribution - dispersion throughout the body.

Metabolization (or biotransformation, or inactivation) — transformation of parent compounds into daughter metabolites.


Excretion


CHMI vis SIM (Dx with NAT)

CHMI vis SIM (Dx with TBS)



Nested Nomenclature

Opportunities for Discovery

Acknowledgments

Study Participants

Fred Hutch: Kelly Shipman, Janine Maenza, David Berger, Sue Ferguson, Ryan Jensen, Laurie Rinn, Julie McElrath

Center for Infectious Disease Research: Stefan Kappe, Emma Fritzen, Tracie VonGoedert, Brandon Sack, Sebastian Mikolajczak

UW: Sean Murphy, Anna Wald, Wes Van Voorhis, Fred Buckner

MMV, DoD, BMGF, NIH

THANK YOU

seattlemalaria.org

