Studies to Evaluate Blood Safety: Risk of Transmission of Parasites such as Trypanosoma cruzi through Blood Transfusion
Principal Investigator: Alain Debrabant, PhD
Office / Division / Lab: OBRR / DETTD / LEP
General Overview
The blood supply of the US is a valuable resource that must be kept safe and available for surgical patients, accident victims, wounded soldiers, patients being treated for blood diseases, and other people in need of transfusions and products derived from blood. Therefore, donated blood is tested for a variety of infectious agents, such as the viruses HIV, West Nile Virus (WNV), and hepatitis B and C.
Blood collection facilities also test potential blood donors for the parasite Trypanosoma cruzi (T. cruzi), which causes Chagas disease. This infectious disease, which is spread by the bite of certain bugs, occurs in Mexico, Central and South America and, rarely in North America. The parasite infects mostly the heart tissues but can also be detected in the blood of infected persons.
About one third of the people infected with T. cruzi will develop serious disease later in their life; but everyone who is infected will remain infected for life.
Infected individuals can show no sign of disease; so if they become blood donors there is a risk that they can transmit the parasite to another person by blood transfusion. Experts estimate that about 300,000 persons living in the US are unknowingly infected with T. cruzi. Therefore, in order to protect the blood supply, all blood donors are tested to see if they are infected with T. cruzi.
The test licensed by FDA determines if a person is infected with T. cruzi by detecting antibodies to this parasite in blood. However, this test cannot determine if blood already donated by that person contains T. cruzi parasites. This is important because blood donated by infected individuals might be free of parasites and safe to use. However, until a test is available to ensure that such donated blood is safe to use, it must be discarded if the current test gives a positive result.
In order to help prevent the unnecessary disposal of such a valuable resource, our laboratory is studying how to better detect T. cruzi directly in blood from infected donors and to better understand how T. cruzi causes disease in humans. Our strategy has two goals: first, to develop ways to detect the DNA of this parasite in donated blood when there are only a few parasites present; and second, to develop methods to filter out T. cruzi parasites from whole blood donations without affecting the quality of the blood. In order to achieve these goals we are using recently developed technologies designed to select unique molecules in a complex mixture of molecules that bind strongly and exclusively to T. cruzi parasites. These unique molecules will be used to find and/or remove parasites from infected blood.
This research supports the regulatory work of the Division of Emerging and Transfusion Transmitted Diseases, which is responsible for licensing blood screening tests for blood-borne pathogens and HIV diagnostics. The new understanding of T cruzi biology and development of methods for detecting the parasite in blood will help the division to make informed regulatory decisions about such products.
Our goal is to increase the safety of the US blood supply and decrease the risk of transmission of parasitic agents by blood transfusion or organ transplantation.
Scientific Overview
The blood borne protozoan parasite Trypanosoma cruzi (T. cruzi) is the causative agent of Chagas disease. An estimated 90 million people are at risk for this disease, mostly in Mexico, Central and South America. Among this population about 11 million persons carry the parasite chronically and present a potential source of infection through blood donation.
Some experts estimate that about 300,000 persons unknowingly infected with T. cruzi currently live in the US. Several documented cases of T. cruzi transmission by blood transfusion or organ transplantation have been reported in North America.
In order to reduce the risk of transmission by blood transfusion in the US, the FDA licensed in December 2006 the first blood screening test for the presence of T. cruzi antibodies in blood. Among donors tested up to February 2010, 1,134 were confirmed positive and removed from the donor pool, significantly reducing the risk of blood transmission.
The goal of our research program is to improve our knowledge of the cell and molecular biology of T. cruzi parasites, to study disease pathogenesis using animal models, and to better detect this parasites in blood of infected people.
We are working to identify new parasite targets that could be exploited for drug and vaccine development, or for parasite detection in blood and blood products. The selection of targets for detection assays is based on the high copy number of nucleic acid sequences in the parasite genome for nucleic acid-based assays and on secreted/excreted parasite proteins for protein-based assays. In addition, we are evaluating new technologies to concentrate parasites from infected blood prior to testing or to eliminate parasites by filtration. Our current approach is to use RNA aptamers (random, approximately 100-nucleotide-long RNA sequences) as T. cruzi -specific ligands. A major goal in our research is to improve the sensitivity of nucleic-acid- or parasite-protein-based assays and further enhance blood safety.
This research program contributes to a better understanding of T. cruzi biology and pathogenesis, which will enable FDA to make informed regulatory decisions regarding this pathogen. Our studies provide scientific and technical expertise relevant to the evaluation of the sensitivity and specificity of blood screening tests and new testing platforms for T. cruzi and other related blood borne pathogens.
Our research program aims to increase the safety of the US blood supply and decrease the risk of transmission of parasitic agents by blood transfusion or organ transplantation.
Publications
- Front Microbiol 2023 Sep 20;14:1256385
The transcriptome landscape of 3D-cultured placental trophoblasts reveals activation of TLR2 and TLR3/7 in response to low Trypanosoma cruzi parasite exposure.
Silberstein E, Chung CC, Debrabant A - Front Immunol 2024 Jan 12;14:1340755
Trypanosoma cruzi antigen detection in blood to assess treatment efficacy and cure in mice models of Chagas disease.
de Araujo FF, Nagarkatti R, Mazzeti AL, Gonçalves KR, de Figueiredo Diniz L, Campos do Vale I, Martins-Filho OA, Debrabant A, Bahia MT, Teixeira-Carvalho A - BMJ Open 2021 Dec;11(12):e052897
New chemotherapy regimens and biomarkers for Chagas disease: the rationale and design of the TESEO study, an open-label, randomised, prospective, phase-2 clinical trial in the Plurinational State of Bolivia.
Alonso-Vega C, Urbina JA, Sanz S, Pinazo MJ, Pinto JJ, Gonzalez VR, Rojas G, Ortiz L, Garcia W, Lozano D, Soy D, Maldonado RA, Nagarkatti R, Debrabant A, Schijman A, Thomas MC, López MC, Michael K, Ribeiro I, Gascon J, Torrico F, Almeida IC - Front Microbiol 2021 Mar 4;12:626370
Human placental trophoblasts are resistant to trypanosoma cruzi infection in a 3D-culture model of the maternal-fetal interface.
Silberstein E, Kim KS, Acosta D, Debrabant A - Sci Rep 2020 Nov 11;10(1):19591
A novel Trypanosoma cruzi secreted antigen as a potential biomarker of Chagas disease.
Nagarkatti R, Acosta D, Acharyya N, de Araujo FF, Elói-Santos SM, Martins-Filho OA, Teixeira-Carvalho A, Debrabant A - Front Med 2020 Nov 24;7:617373
Complete inactivation of blood borne pathogen Trypanosoma cruzi in stored human platelet concentrates and plasma treated with 405 nm violet-blue light.
Jankowska KI, Nagarkatti R, Acharyya N, Dahiya N, Stewart CF, Macpherson RW, Wilson MP, Anderson JG, MacGregor SJ, Maclean M, Dey N, Debrabant A, Atreya CD - PLoS One 2018 Apr 19;13(4):e0195879
A novel nanoluciferase-based system to monitor Trypanosoma cruzi infection in mice by bioluminescence imaging.
Silberstein E, Serna C, Fragoso SP, Nagarkatti R, Debrabant A - J Immunol 2018 Jan 1;200(1):196-208
NOX2-derived reactive oxygen species control inflammation during Leishmania amazonensis infection by mediating infection-induced neutrophil apoptosis.
Carneiro MBH, Roma EH, Ranson AJ, Doria NA, Debrabant A, Sacks DL, Vieira LQ, Peters NC - PLoS Negl Trop Dis 2016 Aug 31;10(8):e0004963
Live attenuated Leishmania donovani centrin knock out parasites generate non-inferior protective immune response in aged mice against visceral leishmaniasis.
Bhattacharya P, Dey R, Dagur PK, Joshi AB, Ismail N, Gannavaram S, Debrabant A, Akue AD, KuKuruga MA, Selvapandiyan A, McCoy JP Jr, Nakhasi HL - Infect Immun 2016 Apr;84(4):1123-36
Trypanosoma cruzi causes paralyzing systemic necrotizing vasculitis driven by pathogen-specific Type I immunity in mice.
Roffe E, Marino AP, Weaver J, Wan W, de Araujo FF, Hoffman V, Santiago HC, Murphy PM - Cell Death Dis 2015 Dec 10;6:e2018
Apoptotic cell clearance of Leishmania major-infected neutrophils by dendritic cells inhibits CD8(+) T-cell priming in vitro by Mer tyrosine kinase-dependent signaling.
Ribeiro-Gomes FL, Romano A, Lee S, Roffe E, Peters NC, Debrabant A, Sacks D - Infect Immun 2015 Oct;83(10):3800-15
Genetically modified live attenuated L.donovani parasites induce innate immunity through classical activation of macrophages that direct Th1 response in mice.
Bhattacharya P, Dey R, Dagur PK, Kruhlak M, Ismail N, Debrabant A, Joshi AB, Akue A, Kukuruga M, Takeda K, Selvapandiyan A, McCoy JP Jr, Nakhasi HL - PLoS Negl Trop Dis 2015 Jan 8;9(1):e3451
Aptamer-based detection of disease biomarkers in mouse models for chagas drug discovery.
de Araujo FF, Nagarkatti R, Gupta C, Marino AP, Debrabant A