Step 1: Device Discovery and Concept
It is important to understand how devices are classified since the development process differs depending on the device’s classification.
Classifications
FDA classifies medical devices based on the risk posed by a device. Medical devices can change classification systems depending on the results of scientific data.
Class 1: General Controls
Class 1 devices pose the least amount of risk to consumers. These low-risk devices, such as oxygen masks or surgical tools, are subject to “general controls.” General controls ensure the safety and effectiveness of devices once they’re manufactured. General controls consider the following factors:
- Good manufacturing practices
- Standards and Reporting Adverse Events to FDA
- registration,
- general recordkeeping requirements
Class 2: General Controls With Special Controls
Class 2 devices pose more risk to consumers than do Class 1 devices. Therefore, Class 2 devices are subject to special controls in addition to general controls. Special controls include:
- Labeling requirements (information that must be included on a product label)
- Device specific mandatory performance standards
- Device specific testing requirements
Class 2 devices are also subject to general controls.
Class 3: General Controls and Premarket Approval
Usually, Class 3 devices support or sustain life, are implanted in the body, or have the potential for unreasonable risk of illness or injury. Examples include pacemakers, breast implants, and HIV diagnostic tests. As a result, Class 3 devices require premarket approval. To receive this, a manufacturer must prove that a device is safe and effective. Class 3 devices are also subject to general controls.
Development/Concept
Medical device development follows a well-established path. Many of these steps overlap with each other as scientists invent, refine, and test the devices.
Typically, the development process begins when researchers see an unmet medical need. Then, they create a concept or an idea for a new device. From there, researchers build a “proof of concept,” a document that outlines the steps needed to determine whether or not the concept is workable. Many times, concepts are not practical. The concepts that do show promise move to the later stages of development.